Skip to main content

Bioethanol Recovery and Dehydration Techniques

  • Chapter
  • First Online:
Bioethanol: A Green Energy Substitute for Fossil Fuels

Part of the book series: Green Energy and Technology ((GREEN))

  • 253 Accesses

Abstract

Within the framework of the circular economy, bioethanol made from biological resources is regarded as a viable renewable energy option. However, the dehydration process is critical to bioethanol production suitable for use as fuel. Due to the ever-increasing demands placed on the yield and purity of anhydrous bioethanol, numerous methods have been developed and improved over time to achieve the desired product. In this chapter, we first briefly reviewed the conventional distillation method for bioethanol recovery, which results in azeotropic ethanol. Second, for industrial applications, we assessed the mode of operation, benefits and drawbacks of past and current purification technologies used in bioethanol dehydration, such as the adsorption process, extractive distillation, azeotropic distillation, membrane process, supercritical fluid extraction and hybrid process. The review showed that the membrane technique might significantly increase the efficiency of bioethanol purification because it offers the benefits of high selectivity, energy-efficient, eco-friendly (low waste generation) and cost-effective continuous operation to handle large volumes of feedstock. The economic impacts and future directions of bioethanol recovery and dehydration processes were also appraised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aptel P, Challard N, Cuny J, Neel J (1976) Application of the pervaporation process to separate azeotropic mixtures. J Membr Sci 1:271–287

    Article  Google Scholar 

  2. Baker RW, Cussler E, Eykamp W, Koros W, Riley R (1991) Membrane separation system: recent developments and future directions. Noyes Data Corporation, Park Ridge, NJ, p 451

    Google Scholar 

  3. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52(2):858–875

    Article  Google Scholar 

  4. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  Google Scholar 

  5. Beery KE, Ladisch MR (2001) Adsorption of water from liquid-phase ethanol−water mixtures at room temperature using starch-based adsorbents. Ind Eng Chem Res 40(9):2112–2115

    Article  Google Scholar 

  6. Chapman PD, Oliveira T, Livingston AG, Li K (2008) Membranes for the dehydration of solvents by pervaporation. J Membr Sci 318(1–2):5–37

    Article  Google Scholar 

  7. Chen W-C, Sheng C-T, Liu Y-C, Chen W-J, Huang W-L, Chang S-H, Chang W-C (2014) Optimizing the efficiency of anhydrous ethanol purification via regenerable molecular sieve. Appl Energy 135:483–489

    Article  Google Scholar 

  8. de Jesús Hernández-Hernández E, Cabrera-Ruiz J, Hernández-Escoto H, Gutiérrez-Antonio C, Hernández S (2022) Simulation study of the production of high purity ethanol using extractive distillation: Revisiting the use of inorganic salts. Chem Eng Process Process Intensification 170:108670

    Google Scholar 

  9. Farhan NM, Ibrahim SS, Leva L, Yave W, Alsalhy QF (2022) The combination of a new PERVAPTM membrane and molecular sieves enhances the ethanol drying process. Chem Eng Process Process Intensification 174:108863

    Article  Google Scholar 

  10. Frolkova A, Raeva V (2010) Bioethanol dehydration: state of the art. Theor Found Chem Eng 44:545–556

    Article  Google Scholar 

  11. Ge Y, Zhang L, Yuan X, Geng W, Ji J (2008) Selection of ionic liquids as entrainers for separation of (water + ethanol). J Chem Thermodyn 40(8):1248–1252

    Article  Google Scholar 

  12. Gerbaud V, Rodriguez-Donis I, Hegely L, Lang P, Denes F, You X (2019) Review of extractive distillation. Process design, operation, optimization and control. Chem Eng Res Des 141:229–271

    Article  Google Scholar 

  13. Gil I, García L, Rodríguez G (2014) Simulation of ethanol extractive distillation with mixed glycols as separating agent. Braz J Chem Eng 31:259–270

    Article  Google Scholar 

  14. Gil I, Uyazán A, Aguilar J, Rodríguez G, Caicedo L (2008) Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation. Braz J Chem Eng 25:207–215

    Article  Google Scholar 

  15. Gjineci N, Boli E, Tzani A, Detsi A, Voutsas E (2016) Separation of the ethanol/water azeotropic mixture using ionic liquids and deep eutectic solvents. Fluid Phase Equilib 424:1–7

    Article  Google Scholar 

  16. Gros H, Díaz S, Brignole E (1998) Near-critical separation of aqueous azeotropic mixtures: process synthesis and optimization. J Supercrit Fluids 12(1):69–84

    Article  Google Scholar 

  17. Gutiérrez JP, Meindersma GW, de Haan AB (2012) COSMO-RS-based ionic-liquid selection for extractive distillation processes. Ind Eng Chem Res 51(35):11518–11529

    Article  Google Scholar 

  18. Güvenç A, Mehmetoglu Ü, Calimli A (1998) Supercritical CO2 extraction of ethanol from fermentation broth in a semicontinuous system. J Supercrit Fluids 13(1–3):325–329

    Article  Google Scholar 

  19. Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28(4):384–410

    Article  Google Scholar 

  20. Han J, Fan Y, Yu G, Yang X, Zhang Y, Tian J, Li G (2021) Ethanol dehydration with ionic liquids from molecular insights to process intensification. ACS Sustain Chem Eng 10(1):441–455

    Article  Google Scholar 

  21. Huang H-J, Ramaswamy S, Tschirner U, Ramarao B (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21

    Article  Google Scholar 

  22. Kaminski W, Marszalek J, Ciolkowska A (2008) Renewable energy source—Dehydrated ethanol. Chem Eng J 135(1–2):95–102

    Article  Google Scholar 

  23. Karimi S, Karri RR, Tavakkoli Yaraki M, Koduru JR (2021) Processes and separation technologies for the production of fuel-grade bioethanol: a review. Environ Chem Lett 19(4):2873–2890

    Article  Google Scholar 

  24. Karimi S, Yaraki MT, Karri RR (2019) A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renew Sustain Energy Rev 107:535–553

    Article  Google Scholar 

  25. Karuppiah R, Peschel A, Grossmann IE, Martín M, Martinson W, Zullo L (2008) Energy optimization for the design of corn-based ethanol plants. AlChE J 54(6):1499–1525

    Article  Google Scholar 

  26. Khalid A, Aslam M, Qyyum MA, Faisal A, Khan AL, Ahmed F, Lee M, Kim J, Jang N, Chang IS (2019) Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renew Sustain Energy Rev 105:427–443

    Article  Google Scholar 

  27. Khosravi-Darani K, Vasheghani-Farahani E (2005) Application of supercritical fluid extraction in biotechnology. Crit Rev Biotechnol 25(4):231–242

    Article  Google Scholar 

  28. Kiss AA, David J, Suszwalak P (2012) Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep Purif Technol 86:70–78

    Article  Google Scholar 

  29. Kiss AA, Ignat RM (2012) Innovative single step bioethanol dehydration in an extractive dividing-wall column. Sep Purif Technol 98:290–297

    Article  Google Scholar 

  30. Klemes JJ, Varbanov PS, Liew PY (2014) 24th European Symposium on Computer Aided Process Engineering: Part A and B. Elsevier

    Google Scholar 

  31. Kumar S, Singh N, Prasad R (2010) Anhydrous ethanol: a renewable source of energy. Renew Sustain Energy Rev 14(7):1830–1844

    Article  Google Scholar 

  32. Le NL, Wang Y, Chung T-S (2011) Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. J Membr Sci 379(1–2):174–183

    Article  Google Scholar 

  33. Lei Z, Li C, Chen B (2003) Extractive distillation: a review. Sep Purif Rev 32(2):121–213

    Article  Google Scholar 

  34. Ligero E, Ravagnani T (2003) Dehydration of ethanol with salt extractive distillation—a comparative analysis between processes with salt recovery. Chem Eng Process 42(7):543–552

    Article  Google Scholar 

  35. Loy Y, Lee X, Rangaiah G (2015) Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: an economic comparison after heat integration and optimization. Sep Purif Technol 149:413–427

    Article  Google Scholar 

  36. Mahdi T, Ahmad A, Nasef MM, Ripin A (2015) State-of-the-art technologies for separation of azeotropic mixtures. Sep Purif Rev 44(4):308–330

    Article  Google Scholar 

  37. Mekala M, Neerudi B, Are PR, Surakasi R, Manikandan G, Kakara VR, Dhumal AA (2022) Water removal from an ethanol-water mixture at azeotropic condition by adsorption technique. Adsorpt Sci Technol

    Google Scholar 

  38. Michaels W, Zhang H, Luyben WL, Baltrusaitis J (2018) Design of a separation section in an ethanol-to-butanol process. Biomass Bioenergy 109:231–238

    Article  Google Scholar 

  39. Mulder M, Smolders C (1984) On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles. J Membr Sci 17(3):289–307

    Google Scholar 

  40. Novita FJ, Lee H-Y, Lee M (2018) Energy-efficient and ecologically friendly hybrid extractive distillation using a pervaporation system for azeotropic feed compositions in alcohol dehydration process. J Taiwan Inst Chem Eng 91:251–265

    Article  Google Scholar 

  41. Ong YK, Shi GM, Le NL, Tang YP, Zuo J, Nunes SP, Chung T-S (2016) Recent membrane development for pervaporation processes. Prog Polym Sci 57:1–31

    Article  Google Scholar 

  42. Paulo CI, Diaz MS, Brignole EA (2009) Energy consumption minimization in bioethanol dehydration with supercritical fluids. In: Computer aided chemical engineering, vol 27. Elsevier, pp 1833–1838

    Google Scholar 

  43. Pereiro A, Araújo J, Esperança J, Marrucho I, Rebelo L (2012) Ionic liquids in separations of azeotropic systems—a review. J Chem Thermodyn 46:2–28

    Article  Google Scholar 

  44. Quijada-Maldonado E, Aelmans T, Meindersma G, de Haan A (2013) Pilot plant validation of a rate-based extractive distillation model for water–ethanol separation with the ionic liquid [emim][DCA] as solvent. Chem Eng J 223:287–297

    Article  Google Scholar 

  45. Ravagnani M, Reis M, Maciel Filho R, Wolf-Maciel M (2010) Anhydrous ethanol production by extractive distillation: a solvent case study. Process Saf Environ Prot 88(1):67–73

    Article  Google Scholar 

  46. Saini S, Chandel AK, Sharma KK (2020) Past practices and current trends in the recovery and purification of first generation ethanol: A learning curve for lignocellulosic ethanol. J Clean Prod 268:122357

    Article  Google Scholar 

  47. Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st-to 2nd-generation biofuel technologies. International Energy Agency (IEA) and Organisation for Economic Co-Operation and Development, Paris, pp 16–20

    Google Scholar 

  48. Singh A, Rangaiah GP (2017) Review of technological advances in bioethanol recovery and dehydration. Ind Eng Chem Res 56(18):5147–5163

    Article  Google Scholar 

  49. Strods M, Mezule L (2017) Alcohol recovery from fermentation broth with gas stripping: system experimental and optimisation. Agron Res 15:897–904

    Google Scholar 

  50. Sun S, Lü L, Yang A, Shen W (2019) Extractive distillation: advances in conceptual design, solvent selection, and separation strategies. Chin J Chem Eng 27(6):1247–1256

    Article  Google Scholar 

  51. Taiwo A, Madzimbamuto T, Ojumu T (2020) Development of an integrated process for the production and recovery of some selected bioproducts from lignocellulosic materials. Valorization of Biomass to Value-Added Commodities, pp 439–467

    Google Scholar 

  52. Taiwo AE, Madzimbamuto TN, Ojumu TV (2018) Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies 11(7):1740

    Article  Google Scholar 

  53. Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2(6):553–588

    Article  Google Scholar 

  54. Vane LM, Alvarez FR (2008) Membrane-assisted vapor stripping: energy efficient hybrid distillation–vapor permeation process for alcohol–water separation. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 83(9):1275–1287

    Google Scholar 

  55. Zentou H, Abidin ZZ, Yunus R, Awang Biak DR, Korelskiy D (2019) Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth. Processes 7(7):458

    Article  Google Scholar 

  56. Zhu Z, Ri Y, Li M, Jia H, Wang Y, Wang Y (2016) Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents. Chem Eng Process Process Intensification 109:190–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunde V. Ojumu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oladipo, B., Taiwo, A.E., Ojumu, T.V. (2023). Bioethanol Recovery and Dehydration Techniques. In: Betiku, E., Ishola, M.M. (eds) Bioethanol: A Green Energy Substitute for Fossil Fuels. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-36542-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36542-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36541-6

  • Online ISBN: 978-3-031-36542-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics