Skip to main content
Log in

Mathematical modeling of turbulent heat and mass transfer with chemical conversions

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A transient model of heat and mass transfer with nonlinear sources (sinks) caused by first-and second-order chemical reactions is developed. The model uses a matching condition (equal temperature and local flux values) at the reaction zone-coolant interface. A finite-difference numerical solution to the problem is obtained using the alternating direction method. The model is tested by application to fast polymerization processes. The effect of the coolant velocity, reactor radius, and coolant temperature at the reactor inlet on the polymerization efficiency is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c:

concentration, mol/m3

c p :

specific heat capacity, J/(kg K)

\(\tilde D\) :

diffusion tensor

D T :

averaged coefficient of turbulent diffusion, m2/s

E a :

effective activation energy for the reaction of monomer with active site (chain growth), J

E b :

effective activation energy for the chain termination reaction, J

F:

vector of body forces

f 1, f 2, f 3 :

parameters of hyperbolic equation, s

h i :

longitudinal (axial) discretization step

h j :

radial discretization step

h τ :

discretization step in time

K a :

specific rate for the reaction of monomer with active site (chain growth), m3/(mol s)

K b :

specific rate for the chain termination reaction, 1/s

k:

parameter accounting for the separate supply of monomer and catalyst

k a :

preexponential factor for the rate of reaction between monomer and active site (chain growth), m3/(mol s)

k b :

preexponential factor for the chain termination reaction, 1/s

L:

reactor length, m

P:

tensor of surface forces

Q a :

molar heat for the reaction between monomer and active site, J/mol

R:

universal gas constant, J/(mol K)

R 2 :

tubular reactor radius, m

R 3 :

cooling zone “radius,” m

r 2 :

radial coordinate in zone II, m

r 3 :

radial coordinate in zone III, m

r 20 :

conversion factor for writing r 2 in dimensionless form, m

r 30 :

conversion factor for writing r 3 in dimensionless form, m

\(\bar r_2 \) :

dimensionless radial coordinate in zone II

\(\bar r_3 \) :

dimensionless radial coordinate in zone III

T:

temperature, K

T * :

characteristic temperature in the modified Arrhenius equation, K

t:

dimensionless time

u:

velocity vector

u:

averaged value of velocity, m/s

x:

longitudinal coordinate, m

\(\bar x\) :

dimensionless longitudinal coordinate

β = RT */E a :

dimensionless parameter

ηa :

characteristic time for the reaction between monomer and active site, s

ηb :

characteristic time for the chain termination reaction, s

ϑ:

dimensionless temperature

\(\tilde \lambda \) :

thermal conductivity tensor

λ:

thermal conductivity, J/(m s K)

λ*:

effective thermal diffusivity, m2/s

λT :

averaged thermal conductivity, J/(m s K)

ρ:

density, kg/m3

τ:

time, s.

a:

monomer

b:

catalyst (active site)

0:

initial value

1:

value at reactor inlet

2:

zone II

3:

zone III

References

  1. Kholpanov, L.P. and Shkadov, V.Ya., Gidrodinamika i teplomassoobmen s poverkhnost’yu razdela (Hydrodynamics and Heat Mass Transfer with Interface), Moscow: Nauka, 1990.

    Google Scholar 

  2. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.

    Google Scholar 

  3. Vol’pert A.I. and Khudyaev S.I., Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki (Analysis in Classes of Discontinuity Functions and Equations of Mathematical Physics), Moscow: Nauka, 1975.

    Google Scholar 

  4. Trudy Vtoroi rossiiskoi natsional’noi konferentsii po teploobmeny: Tom 3. Svobodnaya konvektsiya. Teploobmen pri khimicheskikh prevrashcheniyakh (Proceeding of the Second Russian Conference on Heat Transfer: Vol. 3. Free Convection: Heat Transfer in Chemical Conversions), Moscow: Mosk. Energet. Inst., 1998.

  5. Minsker, K.S. and Berlin, A.A., Fast Polymerization Processes, Amsterdam: Gordon & Breach, 1996.

    Google Scholar 

  6. Matkovskiy, P.E., Aldoshin, S.M., Troitskii, V.N., et al., Razrabotka i promyshlennaya realizatsiya protsessa polucheniya sinteticheskikh oligodetsenovykh masel (Development and Industrial Implementation of the Process of Producing Synthetic Oligodecene Oils), Chernogolovka: Inst. Problem Khim. Fiz., Russ. Akad. Nauk, 2004.

    Google Scholar 

  7. Kutateladze, S.S., Izbrannye trudy (Selected Works), Novosibirsk: Nauka, 1989.

    Google Scholar 

  8. Samarskii, A.A. and Vabishchevich, P.N., Vychislitel’naya teploperedacha (Computational Heat Transfer), Moscow: Editorial URSS, 2003.

    Google Scholar 

  9. Berlin, A.A., Minsker, K.S., Sangalov, Yu.A., et al., Calculation and Simulation of the Polymerization of Isobutylene As a Fast Reaction, Polymer Sci. USSR, 1981, vol. 22, no. 3, pp. 625–634.

    Article  Google Scholar 

  10. Berlin, A.A., Minsker, K.S., Prochukhan, Yu.A., and Enikolopyan, N.S., Macroscopic Kinetics of Fast Polymerization Processes, Vysokomol. Soedin., Ser. A, 1989, vol. 31, no. 9, pp. 1779–1798.

    CAS  Google Scholar 

  11. Minsker, K.S., Zakharov, V.P., and Berlin, A.A., Plug-Flow Tubular Turbulent Reactors: A New Type of Industrial Apparatus, Teor. Osn. Khim. Tekhnol., 2001, vol. 35, no. 2, pp. 172–177 [Theor. Found. Chem. Eng. (Engl. Transl), vol. 35, no. 2, pp. 162–167].

    Google Scholar 

  12. Minsker, K.S., Berlin, A.A., Zakharov, V.P., D’yakonov, G.S., Mukhametzyanova, A.G., and Zaikov, G.E., Fast Reactions in Polymer Syntheses, Zh. Prikl. Khim., 2003, vol. 76, no. 2, pp. 272–278 [Russ. J. Appl. Chem. (Engl. Transl), vol. 76, no. 2, pp. 264–270].

    Google Scholar 

  13. Oseen, C.W., Über die Stokes’sche Formel, und über eine verwandte Aufgabe in der Hydrodynamik, Ark. Math. Astron. Fys., 1910, vol. 6, no. 29.

  14. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  15. Roache, P.J., Computational Fluid Dynamics, Albuquerque: Hermosa, 1976. Translated under the title Vychislitel’naya gidrodinamika, Moscow: Mir, 1980.

    Google Scholar 

  16. Kennedy, J.P., Shinkawa, A., and Williams, F.J., Fundamental Studies on Cationic Polymerizations: Molecular Weights and Molecular Weight Distributions of Polyisobutylenes Produced by γ-Irradiation (Free Ions) and Chemical Catalysis (Ion Pairs), J. Polym. Sci. A-1, 1971, vol. 9, no. 6, pp. 1551–1561.

    Article  CAS  Google Scholar 

  17. Taylor, R.B. and Williams, F., Kinetics of Ionic Processes in the Radiolysis of Liquids: V. Cationic Polymerization of Isobutylene under Anhydrous Conditions, J. Am. Chem. Soc., 1969, vol. 91, no. 14, pp. 3728–3732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.P. Kholpanov, Yu.S. Polyakov, 2006, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2006, Vol. 40, No. 5, pp. 490–500.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholpanov, L.P., Polyakov, Y.S. Mathematical modeling of turbulent heat and mass transfer with chemical conversions. Theor Found Chem Eng 40, 454–464 (2006). https://doi.org/10.1134/S0040579506050022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579506050022

Keywords

Navigation