Skip to main content
Log in

Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider an \(XYZ\) spin chain within the framework of the generalized algebraic Bethe ansatz. We calculate the actions of monodromy matrix elements on Bethe vectors as linear combinations of new Bethe vectors. We also compute the multiple action of the gauge-transformed monodromy matrix elements on the pre-Bethe vector and express the results in terms of the partition function of the \(8\)-vertex model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A more general case where the Bethe vectors are well defined is the case where \(\eta\) is a finite-order point on an elliptic curve, i.e., \(Q\eta=2P_1+P_2\tau\) with some integer \(Q\), \(P_1\), and \(P_2\) [2]. We restrict ourselves to real \(\eta\) for simplicity.

References

  1. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method. I,” Theoret. and Math. Phys., 40, 688–706 (1979).

    Article  ADS  Google Scholar 

  2. L. A. Takhtadzhyan and L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg \(XYZ\) model,” Russian Math. Surveys, 34, 11–68 (1979).

    Article  ADS  Google Scholar 

  3. L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models,” in: Symmétries quantiques [Quantum Symmetries] (Proceedings of the Les Houches Summer School, Session LXIV, Les Houches, France, August 1 – September 8, 1995, A. Connes, K. Gawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998), pp. 149–219; arXiv: hep-th/9605187.

    Google Scholar 

  4. A. G. Izergin and V. E. Korepin, “The quantum inverse scattering method approach to correlation functions,” Commun. Math. Phys., 94, 67–92 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  5. V. E. Korepin, “Dual field formulation of quantum integrable models,” Commun. Math. Phys., 113, 177–190 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Kojima, V. E. Korepin, and N. A. Slavnov, “Determinant representation for dynamical correlation function of the quantum nonlinear Schrödinger equation,” Commun. Math. Phys., 188, 657–689 (1997); arXiv: hep-th/9611216.

    Article  ADS  Google Scholar 

  7. M. Jimbo, K. Miki, T. Miwa, and A. Nakayashiki, “Correlation functions of the \(XXZ\) model for \(\Delta<-1\),” Phys. Lett. A, 168, 256–263 (1992); arXiv: hep-th/9205055.

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Kitanine, J. M. Maillet, and V. Terras, “Correlation functions of the \(XXZ\) Heisenberg spin-\(1/2\) chain in a magnetic field,” Nucl. Phys. B, 567, 554–582 (2000); arXiv: math-ph/9907019.

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Göhmann, A. Klümper, and A. Seel, “Integral representations for correlation functions of the \(XXZ\) chain at finite temperature,” J. Phys. A: Math. Gen., 37, 7625–7652 (2004); arXiv: hep-th/0405089.

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Kitanine, J. M. Maillet, N. A. Slavnov, and V. Terras, “Master equation for spin-spin correlation functions of the \(XXZ\) chain,” Nucl. Phys. B, 712, 600–622 (2005); arXiv: hep-th/0406190.

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions,” J. Stat. Mech., 2009, P04003, 66 pp. (2009), arXiv: 0808.0227; “A form factor approach to the asymptotic behavior of correlation functions,” J. Stat. Mech., 2011, P12010, 28 pp. (2011), arXiv: 1110.0803; “Form factor approach to dynamical correlation functions in critical models,” J. Stat. Mech., 2012, P09001, 33 pp. (2012), arXiv: 1206.2630.

    Article  MathSciNet  Google Scholar 

  12. J. S. Caux and J. M. Maillet, “Computation of dynamical correlation functions of Heisenberg chains in a magnetic field,” Phys. Rev. Lett., 95, 077201, 3 pp. (2005); arXiv: cond-mat/0502365..

    Article  ADS  Google Scholar 

  13. R. G. Pereira, J. Sirker, J. S. Caux, R. Hagemans, J. M. Maillet, S. R. White, and I. Affleck, “Dynamical spin structure factor for the anisotropic spin-\(1/2\) Heisenberg chain,” Phys. Rev. Lett., 96, 257202, 4 pp. (2006), arXiv: cond-mat/0603681; “Dynamical structure factor at small \(q\) for the \(XXZ\) spin-\(1/2\) chain,” J. Stat. Mech., 2007, P08022, 64 pp. (2007), arXiv: 0706.4327.

    Article  ADS  Google Scholar 

  14. J. S. Caux, P. Calabrese, and N. A. Slavnov, “One-particle dynamical correlations in the one-dimensional Bose gas,” J. Stat. Mech., 2007, P01008, 21 pp. (2007); arXiv: cond-mat/0611321.

    Article  Google Scholar 

  15. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  Google Scholar 

  16. N. A. Slavnov, Algebraic Bethe Ansatz and Correlation Functions: An Advanced Course, World Sci., Singapore (2022).

    Book  Google Scholar 

  17. W. Heisenberg, “Zur Theorie des Ferromagnetismus,” Z. Phys., 49, 619–636 (1928).

    Article  ADS  Google Scholar 

  18. B. Sutherland, “Two-dimensional hydrogen bonded crystals without the ice rule,” J. Math. Phys., 11, 3183–3186 (1970).

    Article  ADS  Google Scholar 

  19. C. Fan and F. Y. Wu, “General lattice model of phase transitions,” Phys. Rev. B, 2, 723–733 (1970).

    Article  ADS  Google Scholar 

  20. R. J. Baxter, “Eight-vertex model in lattice statistics,” Phys. Rev. Lett., 26, 832–833 (1971).

    Article  ADS  Google Scholar 

  21. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London (1982).

    Google Scholar 

  22. N. Kitanine, J.-M. Maillet, and V. Terras, “Form factors of the XXZ Heisenberg spin-\(1/2\) finite chain,” Nucl. Phys. B, 554, 647–678 (1999); arXiv: math-ph/9807020.

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Göhmann and V. E. Korepin, “Solution of the quantum inverse problem,” J. Phys. A: Math. Gen., 33, 1199–1220 (2000); arXiv: hep-th/9910253.

    Article  ADS  MathSciNet  Google Scholar 

  24. J. M. Maillet and V. Terras, “On the quantum inverse scattering problem,” Nucl. Phys. B, 575, 627–644 (2000); arXiv: hep-th/9911030.

    Article  ADS  MathSciNet  Google Scholar 

  25. N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz,” Theoret. and Math. Phys., 79, 502–508 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  26. N. Slavnov, A. Zabrodin, and A. Zotov, “Scalar products of Bethe vectors in the 8-vertex model,” JHEP, 06, 123, 53 pp. (2020); arXiv: 2005.11224.

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Belliard and N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation,” JHEP, 10, 103, 16 pp. (2019); arXiv: 1908.00032.

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Bethe vectors of \(GL(3)\)-invariant integrable models,” J. Stat. Mech., 2013, P02020, 24 pp. (2013).

    Article  MathSciNet  Google Scholar 

  29. S. Belliard, S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Bethe vectors of quantum integrable models with \(GL(3)\) trigonometric \(R\)-matrix,” SIGMA, 9, 058, 23 pp. (2013); arXiv: 1304.7602.

    MathSciNet  Google Scholar 

  30. S. Pakuliak, V. Rubtsov, and A. Silantyev, “The SOS model partition function and the elliptic weight functions,” J. Phys. A: Math. Theor., 41, 295204, 20 pp. (2008); arXiv: 0802.0195.

    Article  MathSciNet  Google Scholar 

  31. W-L. Yang and Y.-Z. Zhang, “Partition function of the eight-vertex model with domain wall boundary condition,” J. Math. Phys., 50, 083518, 14 pp. (2009); arXiv: 0903.3089.

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Rosengren, “An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices,” Adv. Appl. Math., 43, 137–155 (2009); arXiv: 0801.1229.

    Article  MathSciNet  Google Scholar 

  33. G. Felder, “Elliptic quantum groups,” in: Proceedings of XIth International Congress of Mathematical Physics (July 18 – 22, 1994, Paris, France), International Press, Cambridge, MA (1995), pp. 211–218; arXiv: hep-th/9412207.

    Google Scholar 

  34. A. Hutsalyuk, A. Lyashik, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Multiple actions of the monodromy matrix in \(\mathfrak{gl}(2|1)\)-invariant integrable models,” SIGMA, 12, 099, 22 pp. (2016); arXiv: 1605.06419.

    MathSciNet  Google Scholar 

  35. A. G. Izergin, “Partition function of a six-vertex model in a finite volume,” Sov. Phys. Dokl., 32, 878–879 (1987).

    ADS  Google Scholar 

  36. V. E. Korepin, “Calculation of norms of Bethe wave functions,” Commun. Math. Phys., 86, 391–418 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Kharchev and A. Zabrodin, “Theta vocabulary I,” J. Geom. Phys., 94, 19–31 (2015); arXiv: 1502.04603.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Zabrodin and A. Zotov for the numerous and fruitful discussions.

Funding

The work of G. Kulkarni was supported by the SIMC postdoctoral grant of the Steklov Mathematical Institute. The work of N. A. Slavnov was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2022-265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Slavnov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 555–576 https://doi.org/10.4213/tmf10492.

Appendix A: Jacobi theta-functions

Here. we give only the basic properties of Jacobi theta-functions used in the paper (see [37] for more details).

The Jacobi theta-functions are defined as

$$ \begin{alignedat}{3} &\theta_1(u|\tau)=-i\sum_{k\in\mathbb{Z}}(-1)^k q^{(k+1/2)^2}e^{\pi i(2k+1)u},&\qquad &\theta_2(u|\tau)=\sum_{k\in\mathbb{Z}}q^{(k+1/2)^2}e^{\pi i(2k+1)u}, \\ &\theta_3(u|\tau)=\sum_{k\in\mathbb{Z}}q^{k^2}e^{2\pi i ku},&\qquad &\theta_4(u|\tau)=\sum_{k\in\mathbb{Z}}(-1)^kq^{k^2}e^{2\pi iku}, \end{alignedat}$$
(A.1)
where \(\tau\in\mathbb{C}\), \(\operatorname{Im}\tau>0\), and \(q=e^{\pi i\tau}\).

To compute contour integral in Sec. 6, we use the shift properties

$$ \begin{alignedat}{3} &\theta_1(u+1/2|\tau)=\theta_2(u|\tau),&\qquad &\theta_2(u+1/2|\tau)=-\theta_1(u|\tau), \\ &\theta_1(u+1|\tau)=-\theta_1(u|\tau),&\qquad &\theta_2(u+1|\tau)=-\theta_2(u|\tau), \\ &\theta_1(u+\tau|\tau)=-e^{-\pi i(2u+\tau)}\theta_1(u|\tau),&\qquad &\theta_2(u+\tau|\tau)=e^{-\pi i(2u+\tau)}\theta_2(u|\tau). \end{alignedat}$$
(A.2)
To calculate the matrix \(\mathbf W^{(\ell,r)}(u)\) in (4.3), we use the relations
$$ \begin{aligned} \, &2\theta_1(u+v|2\tau)\theta_1(u-v|2\tau)&=\theta_4(u|\tau)\theta_3(v|\tau)-\theta_3(u|\tau)\theta_4(v|\tau), \\ &2\theta_4(u+v|2\tau)\theta_4(u-v|2\tau)&=\theta_4(u|\tau)\theta_3(v|\tau)+\theta_3(u|\tau)\theta_4(v|\tau), \\ &2\theta_1(u+v|2\tau)\theta_4(u-v|2\tau)&=\theta_1(u|\tau)\theta_2(v|\tau)+\theta_2(u|\tau)\theta_1(v|\tau). \end{aligned}$$
(A.3)

Appendix B: A partition function identity

To prove Proposition 5.1, we represent \(\mathbb{A}^\ell_{m,n-r}(\bar v)\) as

$$ \mathbb{A}^\ell_{m,n-r}(\bar v)=\mathbb{A}^{\ell+m_1}_{m-m_1,n-r}(\bar v_{ \scriptscriptstyle{\mathrm{II}} })\mathbb{A}^\ell_{m_1,n-r}(\bar v_{ \scriptscriptstyle{\mathrm I} }),\qquad 1\le m_1<m,$$
(B.1)
where
$$ \begin{aligned} \, &\mathbb{A}^\ell_{m_1,n-r}(\bar v_{ \scriptscriptstyle{\mathrm I} })=A_{\ell+m_1-1-r,\ell+m_1-1+r}(v_{m_1})\ldots A_{\ell-r,\ell+r}(v_1), \\ &\mathbb{A}^{\ell+m_1}_{m-m_1,n-r}(\bar v_{ \scriptscriptstyle{\mathrm{II}} })=A_{\ell+m-1-r,\ell+m-1+r}(v_m)\ldots A_{\ell+m_1-r,\ell+m_1+r}(v_{m_1+1}). \end{aligned}$$
(B.2)
Due to the symmetry of \(\mathbb{A}^\ell_{m,n-r}(\bar v)\), we can consider \(\bar v_{ \scriptscriptstyle{\mathrm I} }=\{v_1,\ldots,v_{m_1}\}\), \(\bar v_{ \scriptscriptstyle{\mathrm{II}} }=\{v_{m_1+1},\ldots,v_m\}\) without loss of generality.

Acting with \(\mathbb{A}^\ell_{m_1,n-r}(\bar v_{ \scriptscriptstyle{\mathrm I} })\) on \(|\psi^{\ell}_{n-r}(\bar u)\rangle\), we obtain

$$\begin{aligned} \, \mathbb{A}^\ell_{m,n-r}&(\bar v)|\psi^{\ell}_{n-r}(\bar u)\rangle= \sum_{\{\bar\rho_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\{\bar v_{ \scriptscriptstyle{\mathrm I} },\bar u\}} \frac{a(\bar\rho_{ \scriptscriptstyle{\mathrm I} })K^p_{m_1}(\bar v_{ \scriptscriptstyle{\mathrm I} }|\bar\rho_{ \scriptscriptstyle{\mathrm I} })}{f(\bar v_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })}f(\bar\rho_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} }) \mathbb{A}^{\ell+m_1}_{m-m_1,n-r}(\bar v_{ \scriptscriptstyle{\mathrm{II}} })|\psi^{\ell+m_1}_{n-r}(\bar\rho_{ \scriptscriptstyle{\mathrm{II}} })\rangle. \end{aligned}$$
(B.3)
Acting with \(\mathbb{A}^{\ell+m_1}_{m-m_1,n-r}(\bar v_{ \scriptscriptstyle{\mathrm{II}} })\) on \(|\psi^{\ell+m_1}_{n-r}(\bar\rho_{ \scriptscriptstyle{\mathrm{II}} })\rangle\), we obtain
$$\begin{aligned} \, \mathbb{A}^\ell_{m,n-r}(\bar v)|\psi^{\ell}_{n-r}(\bar u)\rangle={}& \sum_{\{\bar\rho_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm{II}} }\}\vdash\{\bar v_{ \scriptscriptstyle{\mathrm I} },\bar u\}} \frac{a(\bar\rho_{ \scriptscriptstyle{\mathrm I} })K^p_{m_1}(\bar v_{ \scriptscriptstyle{\mathrm I} }|\bar\rho_{ \scriptscriptstyle{\mathrm I} })}{f(\bar v_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })}f(\bar\rho_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })\times{} \nonumber\\ &\times\sum_{\{\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} }\}\vdash\{\bar v_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm{II}} }\}} \frac{a(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })K^{p+m_1}_{m-m_1}(\bar v_{ \scriptscriptstyle{\mathrm{II}} }|\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })} {f(\bar v_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })}f(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }) |\psi^{\ell+m}_{n-r}(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} })\rangle. \end{aligned}$$
(B.4)
The sum is taken over partitions in two steps. First, we divide the union \(\{\bar v_{ \scriptscriptstyle{\mathrm I} },\bar u\}\) into subsets \(\bar\rho_{ \scriptscriptstyle{\mathrm I} }\) and \(\bar\rho_{ \scriptscriptstyle{\mathrm{II}} }\) such that \(\#\bar\rho_{ \scriptscriptstyle{\mathrm I} }=m_1\). Next, we form the union \(\{\bar v_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm{II}} }\}\) and divide it into subsets \(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }\) and \(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} }\) such that \(\#\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }=m-m_1\). Thus, we can say that the sum is eventually taken over partitions of the union \(\{\bar v,\bar u\}\) into three subsets \(\bar\rho_{ \scriptscriptstyle{\mathrm I} }\), \(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }\), and \(\#\bar\rho_{ \scriptscriptstyle{\mathrm I} }=m_1\), \(\#\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }=m-m_1\), and \(\bar v_{ \scriptscriptstyle{\mathrm{II}} }\cap\bar\rho_{ \scriptscriptstyle{\mathrm I} }=\varnothing\).

We can eliminate the intermediate subset \(\bar\rho_{ \scriptscriptstyle{\mathrm{II}} }\). Because \(\{\bar v_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm{II}} }\}=\{\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} }\}\), we have

$$ f(\bar\rho_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })=\frac{f(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })f(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })}{f(\bar v_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })}.$$
(B.5)
We observe that under (B.5), the condition \(\bar v_{ \scriptscriptstyle{\mathrm{II}} }\cap\bar\rho_{ \scriptscriptstyle{\mathrm I} }=\varnothing\) is automatically taken into account because \(1/f(\bar v_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })=0\) if there is \(v_j\) such that \(v_j\in\bar\rho_{ \scriptscriptstyle{\mathrm I} }\) and \(v_j\in\bar v_{ \scriptscriptstyle{\mathrm{II}} }\). Thus, we arrive at
$$\begin{aligned} \, \mathbb{A}^\ell_{m,n-r}(\bar v)|\psi^{\ell}_{n-r}(\bar u)\rangle={}& \sum_{\{\bar\rho_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} }\}\vdash\{\bar v,\bar u\}} a(\bar\rho_{ \scriptscriptstyle{\mathrm I} })a(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }) \frac{f(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })f(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })f(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })} {f(\bar v,\bar\rho_{ \scriptscriptstyle{\mathrm I} })f(\bar v_{ \scriptscriptstyle{\mathrm{II}} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })}\times{} \nonumber\\ &\times K^p_{m_1}(\bar v_{ \scriptscriptstyle{\mathrm I} }|\bar\rho_{ \scriptscriptstyle{\mathrm I} })K^{p+m_1}_{m-m_1}(\bar v_{ \scriptscriptstyle{\mathrm{II}} }|\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })|\psi^{\ell+m}_{n-r}(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} })\rangle. \end{aligned}$$
(B.6)

Let \(\{\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} }\}=\bar\rho_0\). Then (B.6) takes the form

$$\begin{aligned} \, \mathbb{A}^\ell_{m,n-r}(\bar v)|\psi^{\ell}_{n-r}(\bar u)\rangle={}& \sum_{\{\bar\rho_0,\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} }\}\vdash\{\bar v,\bar u\}} a(\bar\rho_0)\frac{f(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} },\bar\rho_0)}{f(\bar v,\bar\rho_0)} |\psi^{\ell+m}_{n-r}(\bar\rho_{ \scriptscriptstyle{\mathrm{IV}} })\rangle\times{} \nonumber\\ &\times\sum_{\{\bar\rho_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\}\vdash \bar\rho_0} K^p_{m_1}(\bar v_{ \scriptscriptstyle{\mathrm I} }|\bar\rho_{ \scriptscriptstyle{\mathrm I} })K^{p+m_1}_{m-m_1}(\bar v_{ \scriptscriptstyle{\mathrm{II}} }|\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })f(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} }) f(\bar v_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }). \end{aligned}$$
(B.7)
Thus, the sum in the second line must give \(K_m^{p}(\bar v|\bar\rho_0)\):
$$ \sum_{\{\bar\rho_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }\}\vdash \bar\rho_0} K^p_{m_1}(\bar v_{ \scriptscriptstyle{\mathrm I} }|\bar\rho_{ \scriptscriptstyle{\mathrm I} })K^{p+m_1}_{m-m_1}(\bar v_{ \scriptscriptstyle{\mathrm{II}} }|\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }) f(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} },\bar\rho_{ \scriptscriptstyle{\mathrm I} })f(\bar v_{ \scriptscriptstyle{\mathrm I} },\bar\rho_{ \scriptscriptstyle{\mathrm{III}} })=K_m^{p}(\bar v|\bar\rho_0).$$
(B.8)
We now replace \(\bar\rho_0\) with \(\bar w=\{w_1,\ldots,w_m\}\) and set \(\bar\rho_{ \scriptscriptstyle{\mathrm I} }=\bar w_{ \scriptscriptstyle{\mathrm I} }\), \(\bar\rho_{ \scriptscriptstyle{\mathrm{III}} }=\bar w_{ \scriptscriptstyle{\mathrm{II}} }\). Then we immediately arrive at (5.5).

We now turn to the proof of Corollary 5.2. We use induction on \(m\). Clearly, the initial condition (5.6) can be written in form (5.10) for \(m=1\). To see the \(m\)th iteration, we first rewrite (5.6) using the substitution

$$ f(\bar v_m, w_k)=\frac{f(\bar v, \bar w)}{f(\bar v_m, \bar w_k)}\frac{1}{f(v_m,\bar w_k)}\frac{1}{g(v_m,w_k)h(v_m,w_k)}.$$
(B.9)
If (5.10) holds for \(m'<m\), we can write
$$\begin{aligned} \, K^p_m(\bar v,\bar w)={}&f(\bar v,\bar w) \sum_{k=1}^{m}\biggl[\frac{\theta_2(v_m-w_k+x_{p+m})}{h(v_m,w_k)\theta_2(x_p)}\frac{f(w_k,\bar w_k)}{f(v_m,\bar w_k)}\times{} \nonumber\\ &\times\sum_{\substack{\sigma'(m)=k,\\ \sigma'\in S_m}}\prod_{a=1}^{m-1} \biggl\{\frac{\theta_2(v_a-w_{\sigma'(a)}+x_{\ell+r+a})}{h(v_a,w_{\sigma'(a)})\theta_2(x_{\ell+r+a})} \prod_{k=1}^{a-1}\frac{f(w_{\sigma'(a)},w_{\sigma'(k)})}{f(v_a,w_{\sigma'(k)})}\biggr\}\biggr]. \end{aligned}$$
(B.10)
This can be combined to obtain a single sum over all permutations \(\sigma\in S_m\), which thus proves (5.10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, G., Slavnov, N.A. Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz. Theor Math Phys 217, 1889–1906 (2023). https://doi.org/10.1134/S0040577923120085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923120085

Keywords

Navigation