Skip to main content
Log in

Discretization of the modified Korteweg–de Vries–sine Gordon equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide an integrable discretization of the modified Korteweg–de Vries–sine Gordon equation. The discrete form is a coupled system and is derived via the Cauchy matrix approach by introducing suitable discrete plane wave factors. Solutions and a Lax pair are constructed in this approach. The dynamics of some solutions are illustrated. The modified Korteweg–de Vries–sine Gordon equation is recovered in the continuum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Hereafter, we write \(p\boldsymbol I+\boldsymbol K\) as \(p+\boldsymbol K\), etc., because this causes no confusion.

References

  1. H. D. Wahlquist and F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg– de Vries equation,” Phys. Rev. Lett., 31, 1386–1390 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge (2016).

    Book  MATH  Google Scholar 

  3. F. W. Nijhoff and H. Capel, “The discrete Korteweg–de Vries equation,” Acta Appl. Math., 39, 133–158 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. W. Nijhoff, G. R. W. Quispel, and H. W. Capel, “Direct linearization of nonlinear difference- difference equations,” Phys. Lett. A, 97, 125–128 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Konno, W. Kameyama, and H. Sanuki, “Effect of weak dislocation potential on nonlinear wave propagation in anharmonic crystal,” J. Phys. Soc. Japan, 37, 171–176 (1974).

    Article  ADS  Google Scholar 

  6. L. Bianchi, “Sulla trasformazione di Bäcklund per le superficie peeudosferiche,” Rom. Acc. L. Rend. Ser. 5, 1, 3–12 (1892).

    MATH  Google Scholar 

  7. H. H. Chen, “General derivation of Bäcklund transformations from inverse scattering problems,” Phys. Rev. Lett., 33, 925–928 (1974).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. K. Konno and H. Sanuki, “Bäcklund transformation for equation of motion for nonlinear lattice under weak dislocation potential,” J. Phys. Soc. Japan, 39, 22–24 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. C.-H. Gu, “On the Bäcklund transformations for the generalized hierarchies of compound MKdV–SG equations,” Lett. Math. Phys., 12, 31–41 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett., 30, 1262–1264 (1973); “Nonlinear-evolution equations in physical significance,” 31, 125–127 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Nijhoff, J. Atkinson, and J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach,” J. Phys. A: Math. Theor., 42, 404005, 34 pp. (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Hirota, “Nonlinear partial difference equations III; discrete sine-Gordon equation,” J. Phys. Soc. Japan, 43, 2079–2086 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. J. Orfanidis, “Sine-Gordon equation and nonlinear \(\sigma\) model on a lattice,” Phys. Rev. D, 18, 3828–3832 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Classification of integrable equations on quad- graphs: the consistency approach,” Commun. Math. Phys., 233, 513–543 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. D.-J. Zhang and S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach,” Stud. Appl. Math., 131, 72–103 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. D.-D. Xu, D.-J. Zhang, and S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation,” J. Nonlinear Math. Phys., 21, 382–406 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. S.-L. Zhao, “A discrete negative AKNS equation: generalized Cauchy matrix approach,” J. Nonlinear Math. Phys., 23, 544–562 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Cho, M. Mesfun, and D.-J. Zhang, “A revisit to the ABS H2 equation,” SIGMA, 17, 093, 19 pp. (2021).

    MathSciNet  MATH  Google Scholar 

  19. S. S. Li, C. Z. Qu, X. X. Yi, and D.-J. Zhang, “Cauchy matrix approach to the SU(2) self-dual Yang–Mills equation,” Stud. Appl. Math., 148, 1703–1721 (2022).

    Article  MathSciNet  Google Scholar 

  20. M. Mesfun and S.-L. Zhao, “Cauchy matrix scheme for semidiscrete lattice Korteweg–de Vries-type equations,” Theoret. and Math. Phys., 211, 483–497 (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. A. Cho, J. Wang, and D.-J. Zhang, “A direct approach to the model of few-optical-cycle solitons beyond the slowly varying envelope approximation,” Math. Methods Appl. Sci., 46, 8518–8531 (2023).

    Article  MathSciNet  Google Scholar 

  22. D.-Y. Chen, D.-J. Zhang, and S.-F. Deng, “The novel multi-soliton solutions of the MKdV–sine Gordon equations,” J. Phys. Soc. Japan, 71, 658–659 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. J. Sylvester, “Sur l’équation en matrices \(px=xq\),” C. R. Acad. Sci. Paris, 99, 67–71, 115–116 (1884).

    MATH  Google Scholar 

  24. H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep., 523, 61–126 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S. V. Sazonov, “Superluminal electromagnetic solitons in nonequilibrium media,” Phys. Usp., 44, 631–644 (2001).

    Article  ADS  Google Scholar 

  26. A. N. Bugay and S. V. Sazonov, “Faster-than-light propagation of electromagnetic solitons in nonequilibrium medium taking account of diffraction,” J. Opt. B: Quantum Semiclass. Opt., 6, 328–335 (2004).

    Article  ADS  Google Scholar 

  27. S. V. Sazonov, “On the propagation of hypersonic solitons in a strained paramagnetic crystal,” JETP, 117, 885–902 (2013).

    Article  ADS  Google Scholar 

  28. O. M. Braun and Yu. S. Kivshar, “Nonlinear dynamics of the Frenkel–Kontorova model,” Phys. Rep., 306, 1–108 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  29. M. L. Rabelo, “On equations which describe pseudospherical surfaces,” Stud. Appl. Math., 81, 221–248 (1989).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to the referee for the invaluable comments.

Funding

This research was supported by the National Science Foundation of China (grant Nos. 12271334, 12126352, 12126343, and 11875040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-jun Zhang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 329–347 https://doi.org/10.4213/tmf10479.

Appendix: Solution of Eq. (2.1) and (2.3)

We list solutions \((\boldsymbol r,\boldsymbol M)\) of the coupled system (2.1) and (2.3) when \(\boldsymbol K\) is in the canonical form and \(\boldsymbol s\in\mathbb{C}_N\). We can also refer to Appendices A and B in [16] or Appendix A in [21] for similar formulas. We first introduce some notation (cf.[15], [16]).

We consider the following matrices: an \(N\times N\) diagonal matrix

$$ \Gamma_{\mathrm d}^{[N]}(\{k_{j}\}_1^{N})=\operatorname{diag}(k_1,k_2,\ldots,k_{N}),$$
(A.1)
an \(N\times N\) Jordan matrix
$$ \Gamma_{\mathrm J}^{[N]}(k_1)=\begin{pmatrix} k_1 & 0 & 0 &\ldots & 0 \\ 1 & k_1 & 0 &\ddots &\vdots \\ 0 & 1 & k_1 &\ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \ldots & 0& 1 & k_1 \\ \end{pmatrix}_{\!{}^{\scriptstyle N\times N}},$$
(A.2)
a lower triangular Toeplitz matrix
$$ T^{[N]}(\{a_{j}\}_1^{N})=\begin{pmatrix} a_1 & 0 & 0 &\ldots & 0 \\ a_2 & a_1 & 0 &\ddots & \vdots \\ a_3 & a_2 & a_1 &\ddots & 0 \\ \vdots & \ddots & \ddots &\ddots & 0 \\ a_N & \ldots & a_3 & a_2 & a_1 \end{pmatrix}_{\!{}^{\scriptstyle N\times N}},$$
(A.3)
and a skew triangular Toeplitz matrix
$$ H^{[N]}(\{b_{j}\}_1^{N})=\begin{pmatrix} b_1 & \ldots & b_{N-2} & b_{N-1} & b_N\\ \vdots & \cdot^{\displaystyle{\displaystyle\cdot}^{\displaystyle\cdot}} & b_{N-1} & b_{N}& 0 \\ b_{N-2} & \cdot^{\displaystyle{\displaystyle\cdot}^{\displaystyle\cdot}} & b_N & 0 & 0\\ b_{N-1} & \cdot^{\displaystyle{\displaystyle\cdot}^{\displaystyle\cdot}} & \cdot^{\displaystyle{\displaystyle\cdot}^{\displaystyle\cdot}} & \cdot^{\displaystyle{\displaystyle\cdot}^{\displaystyle\cdot}} & \vdots \\ b_N & 0 & 0 & \ldots & 0 \end{pmatrix}_{\!{}^{\scriptstyle N\times N}}.$$
(A.4)

We introduce discrete PWFs

$$ \rho_i=\biggl(\frac{p+k_i}{p-k_i}\biggr)^{\!n}\biggl(\frac{q+k_i}{q-k_i}\biggr)^{\!m}\biggl(\frac{q^3k_i+1}{q^3k_i-1}\biggr)^{\!m}\rho^{(0)}_i$$
(A.5)
where \(\rho^{0}_i\) are constants. In addition, we introduce \(N\)th-order vectors
$$ \boldsymbol r_{\mathrm d}^{N}(\{k_{j}\}_1^{N})=(\rho_1,\ldots,\rho_{N})^{\mathrm T},\qquad \boldsymbol r_{\mathrm J}^{N}(k_1)=(r_1,\ldots,r_{N})^{\mathrm T},$$
(A.6)
where
$$r_1=\rho_1,\qquad r_i=\frac{\partial_{k_1}^{i-1}\rho_1}{(i-1)!}\quad\text{for}\quad i=1,\ldots,N.$$
We also introduce the matrices
$$ \begin{alignedat}{3} &G_{\mathrm d}^{[N]}(\{k_{j}\}_1^{N})=(g_{i,j})_{N\times N},&\qquad &g_{i,j}=\frac{1}{k_i+k_{j}}, \\ &G_{\mathrm{dJ}}^{[N_1,N_2]}(\{k_i\}_1^{N_1};a)=(g_{i,j})_{N_1\times N_2},&\qquad &g_{i,j}=-\biggl(\frac{-1}{k_i+a}\biggr)^{\!j}, \\ &G_{\mathrm{JJ}}^{[N_1,N_2]}(a;b)=(g_{i,j})_{N_1\times N_2},&\qquad &g_{i,j}=\mathrm{C}_{i+j-2}^{i-1}\frac{(-1)^{i+j}}{(a+b)^{i+j-1}}, \\ &G_{\mathrm J}^{[N]}(a)=G_{\mathrm{JJ}}^{[N,N]}(a;a)=(g_{i,j})_{N\times N},&\qquad &g_{i,j}=\mathrm{C}_{i+j}^{i-1}\frac{(-1)^{i+j}}{(2a)^{i+j-1}}, \end{alignedat}$$
(A.7)
where \(\mathrm{C}_{j}^{i}=\frac{j!}{i!(j-i)!}\) for \(j\ge i\).

With this notation, we list solutions \((\boldsymbol r,\boldsymbol M)\) of coupled system (2.1) and (2.3).

Case 1.

If

$$ \boldsymbol K=\Gamma_{\mathrm d}^{[N]}(\{k_{j}\}_1^{N}),$$
(A.8)
then
$$ \boldsymbol r=\boldsymbol r_{\mathrm d}^{N}(\{k_{j}\}_1^{N}),\qquad \boldsymbol M=\biggl(\frac{\rho_i s_{j}}{k_i+k_{j}}\biggr)_{{}^{\scriptstyle N\times N}}.$$
(A.9)

Case 2.

If

$$ \boldsymbol K=\Gamma_{\mathrm J}^{[N]}(k_1),$$
(A.10)
then
$$ \boldsymbol r=\boldsymbol r_{\mathrm J}^{N}(k_1),\qquad \boldsymbol M=\boldsymbol F\boldsymbol G\boldsymbol H,$$
(A.11)
where
$$\boldsymbol F=T^{[N]}(\{\rho_{j}\}_1^{N}),\qquad\boldsymbol G=\boldsymbol G_{\mathrm J}^{[N]}(k_1),\qquad \boldsymbol H=H^{[N]}(\{s_{j}\}_1^{N}).$$

Case 3.

If

$$ \boldsymbol K=\operatorname{diag} \bigl(\Gamma_{\mathrm d}^{[N_1]}(\{k_{j}\}_1^{N_1}),\Gamma_{\mathrm J}^{[N_2]}(k_{N_1+1}),\Gamma_{\mathrm J}^{[N_3]}(k_{N_1+2}), \ldots,\Gamma_{\mathrm J}^{[N_{s}]}(k_{N_1+(s-1)})\bigr),$$
(A.12)
where \(\sum_{j=1}^{s}N_{j}=N\), then
$$\boldsymbol r=\begin{pmatrix} \boldsymbol r_{\mathrm d}^{N_1}(\{k_{j}\}_1^{N_1}) \\ \boldsymbol r_{\mathrm J}^{N_2}(k_{N_1+1}) \\ \boldsymbol r_{\mathrm J}^{N_3}(k_{N_1+2}) \\ \vdots\\ \boldsymbol r_{\mathrm J}^{N_{s}}(k_{N_1+(s-1)}) \end{pmatrix}, \quad \boldsymbol M=\boldsymbol F\boldsymbol G\boldsymbol H,$$
where
$$\begin{aligned} \, &\boldsymbol F=\operatorname{diag}\bigl(\Gamma_{\mathrm d}^{[N_1]}(\{\rho_{j}\}_1^{N_1}), T^{[N_2]}(\{r_{j}\}_{N_1+1}^{N_1+N_2}), \\ &\kern 100pt T^{[N_3]}(\{r_{j}\}_{N_1+N_2+1}^{N_1+N_2+N_3}),\ldots, T^{[N_s]}(\{r_{j}\}_{1+\sum_{j=1}^{s-1}N_{j}}^{N})\bigr), \\ &\boldsymbol H=\operatorname{diag}\bigl(\Gamma_{\mathrm d}^{[N_1]}(\{\sigma_{j}\}_1^{N_1}), H^{[N_2]}(\{s_{j}\}_{N_1+1}^{N_1+N_2}), \\ &\kern 100pt H^{[N_3]}(\{s_{j}\}_{N_1+N_2+1}^{N_1+N_2+N_3}),\ldots, H^{[N_s]}(\{s_{j}\}_{1+\sum_{j=1}^{s-1}N_{j}}^{N})\bigr), \end{aligned}$$
and \(\boldsymbol G\) is a symmetric matrix with the block structure
$$\boldsymbol G=\boldsymbol G^{\mathrm T}=(\boldsymbol G_{i,j})_{1\le i,j\le s}$$
with
$$\begin{aligned} \, &\boldsymbol G_{1,1}=\boldsymbol G_{\mathrm d}^{[N_1]}(\{k_{j}\}_1^{N_1}), && \\ &\begin{aligned} \, &\boldsymbol G_{1,j}=\boldsymbol G^{\mathrm T}_{j,1}=G_{DJ}^{[N_1,N_{j}]}(\{k_{j}\}_1^{N_1};k_{N_{j-1}+1}), \\ &\boldsymbol G_{i,j}=\boldsymbol G^{\mathrm T}_{j,i}=G_{JJ}^{[N_i,N_{j}]}(k_{N_{i-1}+1};k_{N_{j-1}+1}), \end{aligned}\qquad 1<i\le j\le s. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, A.A., Wang, J. & Zhang, Dj. Discretization of the modified Korteweg–de Vries–sine Gordon equation. Theor Math Phys 217, 1700–1716 (2023). https://doi.org/10.1134/S0040577923110065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923110065

Keywords

Navigation