Skip to main content
Log in

BRST–BV approach for interacting higher-spin fields

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop the BRST–BV approach to the construction of the general off-shell Lorentz covariant cubic, quartic, and \(e\)-tic interaction vertices for irreducible higher-spin fields on \(d\)-dimensional Minkowski space. We consider two different cases for interacting integer higher-spin fields with both massless and massive fields. The deformation procedure to find a minimal BRST–BV action for interacting higher-spin fields, defined with help of a generalized Hilbert space, is based on the preservation of the master equation in each power of the coupling constant \(g\) starting from the Lagrangian formulation for a free gauge theory. For illustration, we consider the construction of local cubic vertices for \(k\) irreducible massless fields of integer helicities, and \(k-1\) massless fields and one massive field of spins \(s_1, \dots, s_{k-1}, s_k\). For a triple of two massless scalars and a tensor field of integer spin, the BRST–BV action with cubic interaction is explicitly found. In contrast to the previous results on cubic vertices, following our results for the BRST approach to massless fields, we use a single BRST–BV action instead of the classical action with reducible gauge transformations. The procedure is based on the complete BRST operator that includes the trace constraints used in defining the irreducible representation with a definite integer spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Vasiliev, “Higher spin gauge theories in any dimension,” C. R. Phys., 5, 1101–1109 (2004); arXiv: hep-th/0409260.

    Article  MathSciNet  ADS  Google Scholar 

  2. X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev, “Nonlinear higher spin theories in various dimensions,” in: Higher Spin Gauge Theories (Proceedings of 1st Solvay Workshop, Brussels, Belgium, 12–14 May, 2004, R. Argurio, G. Barnich, G. Bonelli, and M. Grigoriev, eds.), International Solvay Institutes for Physics and Chemistry, Brussels (2006), pp. 132–197; arXiv: hep-th/0503128.

    Google Scholar 

  3. A. Fotopoulos and M. Tsulaia, “Gauge-invariant Lagrangians for free and interacting higher spin fields: A review of the BRST formulation,” Internat. J. Modern Phys. A, 24, 1–60 (2008); arXiv: 0805.1346.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. X. Bekaert, N. Boulanger, and P. Sundell, “How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples,” Rev. Modern Phys., 84, 987–1009 (2012); arXiv: 1007.0435.

    Article  ADS  Google Scholar 

  5. M. A. Vasiliev, “Higher-spin theory and space–time metamorphoses,” in: Modifications of Einstein’s Theory of Gravity at Large Distances (Lecture Notes in Physics, Vol. 892, E. Papantonopoulos, ed.), Springer, Cham (2015), pp. 227–264; arXiv: 1404.1948.

    Chapter  Google Scholar 

  6. X. Bekaert, N. Boulanger, A. Campaneoli, M. Chodaroli, D. Francia, M. Grigoriev, E. Sezgin, and E. Skvortsov, “Snowmass white paper: Higher spin gravity and higher spin symmetry,” arXiv: 2205.01567.

  7. D. Ponomarev, “Basic intoroduction to higher-spin theories,” Internat. J. Theor. Phys., 62, 146, 141 pp. (2023); arXiv: 2206.15385.

    Article  MATH  ADS  Google Scholar 

  8. R. Manvelyan, K. Mkrtchyan, and W. Rühl, “General trilinear interaction for arbitrary even higher spin gauge fields,” Nucl. Phys. B, 836, 204–221 (2010); arXiv: 1003.2877.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. R. Manvelyan, K. Mkrtchyan, and W. R\”hl, “A generating function for the cubic interactions of higher spin fields,” Phys. Lett. B, 696, 410–415 (2011); arXiv: 1009.1054.

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Joung and M. Taronna, “Cubic interactions of massless higher spins in (A)dS: metric-like approach,” Nucl. Phys. B, 861, 145–174 (2012); arXiv: 1110.5918.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. M. Vasiliev, “Cubic vertices for symmetric higher-spin gauge fields in \((A)dS_d\),” Nucl. Phys. B, 862, 341–408 (2012); arXiv: 1108.5921.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. A. Fotopoulos and M. Tsulaia, “Current exchanges for reducible higher spin multiplets and gauge fixing,” JHEP, 10, 050, 25 pp. (2009); arXiv: 0907.4061.

    Article  ADS  Google Scholar 

  13. R. R. Metsaev, “BRST–BV approach to cubic interaction vertices for massive and massless higher-spin fields,” Phys. Lett. B, 720, 237–243 (2013); arXiv: 1205.3131.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. M. V. Khabarov and Yu. M. Zinoviev, “Cubic interaction vertices for massless higher spin supermultiplets in \(d=4\),” JHEP, 02, 167, 17 pp. (2021); arXiv: 2012.00482.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. I. L. Buchbinder, V. A. Krykhtin, M. Tsulaia, and D. Weissman, “Cubic vertices for \(\mathcal{N} = 1\) supersymmetric massless higher spin fields in various dimensions,” Nucl. Phys. B, 967, 115427, 25 pp. (2021); arXiv: 2103.08231.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. R. Metsaev, “Interacting massive and massless arbitrary spin fields in 4d flat space,” Nucl. Phys. B, 984, 115978, 25 pp. (2022); arXiv: 2206.13268.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. L. Buchbinder and A. A. Reshetnyak, “General cubic interacting vertex for massless integer higher spin fields,” Phys. Lett. B, 820, 136470, 8 pp. (2021); arXiv: 2105.12030.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Reshetnyak, “Towards the structure of a cubic interaction vertex for massless integer higher spin fields,” Phys. Part. Nuclei Lett., 19, 631–637 (2022); arXiv: 2205.00488.

    Article  ADS  Google Scholar 

  19. I. L. Buchbinder and A. A. Reshetnyak, “Covariant cubic interacting vertices for massless and massive integer higher spin fields,” arXiv: 2212.07097.

  20. I. L. Buchbinder, V. A. Krykhtin, and T. V. Snegirev, “Cubic interactions of d4 irreducible massless higher spin fields within BRST approach,” Eur. Phys. J. C, 82, 1007, 7 pp. (2022); arXiv: 2208.04409.

    Article  ADS  Google Scholar 

  21. E. Skvortsov, T. Tran, and M. Tsulaia, “A stringy theory in three dimensions and massive higher spins,” Phys. Rev. D, 102, 126010, 6 pp. (2020); arXiv: 2006.05809.

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Taronna, “Higher-spin interactions: four-point functions and beyond,” JHEP, 04, 029, 75 pp. (2012); arXiv: 1107.5843.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. P. Dempster and M. Tsulaia, “On the structure of quartic vertex for massless higher spin fields on Minkowski background,” Nucl. Phys. B, 865, 353–375 (2012); arXiv: 1203.5597.

    Article  MATH  ADS  Google Scholar 

  24. P. M. Lavrov, “On interactions of massless spin 3 and scalar fields,” Eur. Phys. J. C, 82, 1059, 7 pp. (2022); arXiv: 2208.05700.

    Article  ADS  Google Scholar 

  25. R. R. Metsaev, “Cubic interaction vertices for massive and massless higher spin fields,” Nucl. Phys. B, 759, 147–201 (2006); arXiv: hep-th/0512342.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. I. A. Batalin and G. A. Vilkovisky, “Gauge algebra and quantization,” Phys. Lett. B, 102, 27–31 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  27. I. A. Batalin and G. A. Vilkovisky, “Quantization of gauge theories with linearly dependent generators,” Phys. Rev. D, 28, 2567–2582 (1983); “Erratum,” 30, 508–508 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  28. I. A. Batalin and G. A. Vilkovisky, “Existence theorem for gauge algebra,” J. Math. Phys., 26, 172–184 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Barnich, M. Grigoriev, A. Semikhatov, and I. Tipunin, “Parent field theory and unfolding in BRST first-quantized terms,” Commun. Math. Phys., 260, 147–181 (2005); arXiv: hep-th/0406192.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. K. Alkalaev, M. Grigoriev, and I. Tipunin, “Massless Poincaré modules and gauge invariant equations,” Nucl. Phys. B, 823, 509–545 (2009); arXiv: 0811.3999.

    Article  MATH  ADS  Google Scholar 

  31. A. Reshetnyak, “Constrained BRST-BFV and BRST–BV Lagrangians for half-integer HS fields on \(R^{1,d-1}\),” Phys. Part. Nucl., 49, 952–957 (2018); arXiv: 1803.05173.

    Article  Google Scholar 

  32. C. Burdik, V. K. Pandey, and A. Reshetnyak, “BRST-BFV and BRST–BV descriptions for bosonic fields with continuous spin on \(\mathbb{R}^{1,d-1}\),” Internat. J. Modern Phys. A, 35, 2050154, 59 pp. (2020); arXiv: 1906.02585.

    Article  MathSciNet  ADS  Google Scholar 

  33. Č. Burdík and A. A. Reshetnyak, “BRST–BV quantum actions for constrained totally- symmetric integer HS fields,” Nucl. Phys. B, 965, 115357, 20 pp. (2021); arXiv: 2010.15741.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. K. H. Bengtsson, “A unified action for higher spin gauge bosons from covariant string theory,” Phys. Lett. B, 182, 321–325 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  35. A. A. Reshetnyak, “Constrained BRST-BFV Lagrangian formulations for higher spin fields in Minkowski spaces,” JHEP, 09, 104, 63 pp. (2018); arXiv: 1803.04678.

    Article  MathSciNet  ADS  Google Scholar 

  36. C. Fronsdal, “Massless fields with integer spin,” Phys. Rev. D, 18, 3624–3629 (1978).

    Article  ADS  Google Scholar 

  37. I. L. Buchbinder, A. Pashnev, and M. Tsulaia, “Lagrangian formulation of the massless higher integer spin fields in the AdS background,” Phys. Lett. B, 523, 338–346 (2001); arXiv: hep-th/0109067.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. I. L. Buchbinder, V. A. Krykhtin, and A. Pashnev, “BRST approach to Lagrangian construction for fermionic massless higher spin fields,” Nucl. Phys. B, 711, 367–391 (2005); arXiv: hep-th/0410215.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. I. L. Buchbinder and V. A. Krykhtin, “Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimentions,” Nucl. Phys. B, 727, 537–563 (2005); arXiv: hep-th/0505092.

    Article  MATH  ADS  Google Scholar 

  40. I. L. Buchbinder, A. Fotopoulos, A. C. Petkou, and M. Tsulaia, “Constructing the cubic interaction vertex of higher spin gauge fields,” Phys. Rev. D, 74, 105018, 16 pp. (2006); arXiv: hep-th/0609082.

    Article  MathSciNet  ADS  Google Scholar 

  41. I. L. Buchbinder, A. V. Galajinsky, and V. A. Krykhtin, “Quartet unconstrained formulation for massless higher spin fields,” Nucl. Phys. B, 779, 155–177 (2007); arXiv: hep-th/0702161.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. I. L. Buchbinder, V. A. Krykhtin, and A. A. Reshetnyak, “BRST approach to Lagrangian construction for fermionic higher spin fields in AdS space,” Nucl. Phys. B, 787, 211–240 (2007); arXiv: hep-th/0703049.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. I. L. Buchbinder and A. Reshetnyak, “General Lagrangian formulation for higher spin fields with arbitrary index symmetry. I. Bosonic fields,” Nucl. Phys. B, 862, 270–326 (2012); arXiv: 1110.5044.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York (1965).

    MATH  Google Scholar 

  45. M. Grigoriev and P. H. Damgaard, “Superfield BRST charge and the master action,” Phys. Lett. B, 474, 323–330 (2000); arXiv: hep-th/9911092.

    Article  ADS  Google Scholar 

  46. D. M. Gitman, P. Yu. Moshin, and A. A. Reshetnyak, “Local superfield Lagrangian BRST quantization,” J. Math. Phys., 46, 072302, 24 pp. (2005); arXiv: hep-th/0507160.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. M. Alexandrov, A. Schwarz, O. Zaboronsky, and M. Kontsevich, “The geometry of the master equation and topological quantum field theory,” Internat. J. Modern Phys. A, 12, 1405–1429 (1997); arXiv: hep-th/9502010.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. L. P. S. Singh and C. R. Hagen, “Lagrangian formulation for arbitrary spin. 1. The boson case,” Phys. Rev. D, 9, 898–909 (1974).

    Article  ADS  Google Scholar 

  49. G. Barnich and M. Henneaux, “Consistent couplings between gauge fields and deformations of the master equation,” Phys. Lett. B, 311, 123–129 (1993); arXiv: hep-th/9304057.

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Henneaux, “Consistent interactions between gauge fields: The cohomological approach,” in: Secondary Calculus and Cohomological Physics (August 24–31, 1997, Moscow, Russia, Contemporary Mathematics, Vol. 219, M. Henneaux, J. Krasil’shchik, and A. Vinogradov, eds.), AMS, Providence, RI (1998), pp. 93–109; arXiv: hep-th/9712226.

    Chapter  MATH  Google Scholar 

  51. I. L. Buchbinder and P. M. Lavrov, “On a gauge-invariant deformation of a classical gauge- invariant theory,” JHEP, 06, 097, 17 pp. (2021); arXiv: 2104.11930.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. D. Francia and A. Sagnotti, “On the geometry of higher-spin gauge fields,” Class. Quantum Grav., 20, S473–S485 (2003); arXiv: hep-th/0212185.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. E. Skvortsov, T. Tran, and M. Tsulaia, “Quantum chiral higher spin gravity,” Phys. Rev. Lett., 121, 031601, 5 pp. (2018); arXiv: 1805.00048.

    Article  ADS  Google Scholar 

  54. V. E. Didenko, O. A. Gelfond, A. V. Korybut, and M. A. Vasiliev, “Limiting shifted homotopy in higher-spin theory,” JHEP, 12, 086, 49 pp. (2019); arXiv: 1909.04876.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. M. A. Vasiliev, “Projectively-compact spinor veritices and space–time spin-locality in higher-spin theory,” Phys. Lett. B, 834, 137401, 11 pp. (2022); arXiv: 2208.02004.

    Article  MATH  Google Scholar 

  56. V. E. Didenko and A. V. Korybut, “On \(z\)-dominance, shift symmetry and spin locality in higher- spin theory,” JHEP, 05, 133, 32 pp. (2023); arXiv: 2212.05006.

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to I. L. Buchbinder, S. A. Fedoruk, and the organizers and participants of the VIIth International Conference “Models in Quantum Field Theory” in Saint Petersburg for the useful discussions and warm hospitality and also to the referee for a careful reading and numerous comments.

Funding

The work was partially supported by the Ministry of Education of the Russian Federation (project No. QZOY-2023-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Reshetnyak.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 98–126 https://doi.org/10.4213/tmf10468.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnyak, A.A. BRST–BV approach for interacting higher-spin fields. Theor Math Phys 217, 1505–1527 (2023). https://doi.org/10.1134/S0040577923100070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923100070

Keywords

Navigation