Skip to main content
Log in

Ultraviolet regularization of energy of two static sources in the bottom-up holographic approach to strong interactions

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well known that the potential energy of two heavy quarks carries an important information about the physics of confinement. Using the Wilson loop confinement criterion and the Nambu–Goto string action, this energy can be derived within the bottom-up holographic approach to strong interactions. We recapitulate the standard holographic derivation of the potential between two static sources with emphasis on the physical interpretation of the results. We address the problem of regularization of the arising ultraviolet divergence in the general case, with “ultraviolet” referring to small values of the holographic coordinate associated with the inverse energy scale in holographic duality. We show that in the case of the widely used soft-wall holographic models many ultraviolet divergences can appear in principle, although the appearance of more than two different divergences looks somewhat exotic in practice. Some possible subtraction schemes are discussed. Different schemes lead to a different constant shift of the potential energy, which entails a certain scheme dependence of holographic predictions for the constant term in the resulting Cornell-like confinement potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. See, however, [8] and the references therein, where it was advocated that the structure of holographic theories for QCD should arise within the framework of some noncritical string theory in which the condensation of a scalar tachyon can naturally generate the SW model background; actually, this hypothesis was already suggested in the pioneering paper [4].

  2. In [13], the term “quark” actually meant an infinitely massive vector boson connecting the \(N\) branes with one brane that was far away in the \(y\) direction. Only in this case is the subtraction of mass well motivated because it appears in the Wilson loop. We prefer to use the term “heavy source,” implicitly meaning “heavy quark.”

References

  1. J. M. Maldacena, “The large \(N\) limit of superconformal field theories and supergravity ,” Adv. Theor. Math. Phys., 2, 231–252 (1998); Internat. J. Theor. Phys., 38, 1113–1133 (1999); arXiv: hep-th/9711200.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys., 2, 505–532 (1998); arXiv: hep-th/9803131.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B, 428, 105–114 (1998); arXiv: hep-th/9802109.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D, 74, 015005, 7 pp. (2006); arXiv: hep-ph/0602229.

    Article  ADS  Google Scholar 

  5. O. Andreev, “\(1/q^2\) corrections and gauge/string duality,” Phys. Rev. D, 73, 107901, 4 pp. (2006); arXiv: 0603170.

    Article  ADS  MathSciNet  Google Scholar 

  6. S. S. Afonin and T. D. Solomko, “Towards a theory of bottom-up holographic models for linear Regge trajectories of light mesons,” Eur. Phys. J. C, 82, 195, 36 pp. (2022); arXiv: 2106.01846.

    Article  ADS  Google Scholar 

  7. I. R. Klebanov and J. M. Maldacena, “Solving quantum field theories via curved spacetimes,” Phys. Today, 62, 28–33 (2009).

    Article  Google Scholar 

  8. I. Iatrakis, E. Kiritsis, and A. Paredes, “An AdS/QCD model from tachyon condensation: II,” JHEP, 11, 123, 54 pp. (2010); arXiv: 1010.1364.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S. S. Afonin, “Holographic-like models as a five-dimensional rewriting of large-\(N_\mathrm{c}\) QCD,” Internat. J. Modern Phys. A, 25, 5683–5710 (2010); arXiv: 1001.3105.

    Article  ADS  MATH  Google Scholar 

  10. O. Andreev and V. I. Zakharov, “Heavy-quark potentials and AdS/QCD,” Phys. Rev. D, 74, 025023, 6 pp. (2006); arXiv: hep-ph/0604204.

    Article  ADS  Google Scholar 

  11. G. S. Bali, “QCD forces and heavy quark bound states,” Phys. Rep., 343, 1–136 (2001); arXiv: hep-ph/0001312.

    Article  ADS  MATH  Google Scholar 

  12. H. Boschi-Filho, N. R. F. Braga, and C. N. Ferreira, “Static strings in Randall–Sundrum scenarios and the quark anti-quark potential,” Phys. Rev. D, 73, 106006, 5 pp. (2006); Erratum 74, 089903, 1 pp. (2006), arXiv: hep-th/0512295; C. D. White, “The Cornell potential from general geometries in AdS/QCD,” Phys. Lett. B, 652, 79–85 (2007), arXiv: hep-ph/0701157; D.-F. Zeng, “Heavy quark potentials in some renormalization group revised AdS/QCD models,” Phys. Rev. D, 78, 126006, 9 pp. (2008), arXiv: 0805.2733; H. J. Pirner and B. Galow, “Strong equivalence of the AdS-metric and the QCD running coupling,” Phys. Lett. B, 679, 51–55 (2009), arXiv: 0903.2701; F. Jugeau, “Hadrons potentials within the gauge/string correspondence,” Ann. Phys., 325, 1739–1789 (2010), arXiv: 0812.4903; S. He, M. Huang, and Q.-S. Yan, “Logarithmic correction in the deformed AdS\(_5\) model to produce the heavy quark potential and QCD beta function,” Phys. Rev. D, 83, 045034, 14 pp. (2011), arXiv: 1004.1880; R. C. L. Bruni, E. Folco Capossoli, and H. Boschi-Filho, “Quark-antiquark potential from a deformed AdS/QCD,” Adv. High Energy Phys., 2019, 1901659, 6 pp. (2019), arXiv: 1806.05720; K. Hashimoto, K. Ohashi, T. Sumimoto, “Deriving the dilaton potential in improved holographic QCD from the meson spectrum,” Phys. Rev. D, 105, 106008, 7 pp. (2022), arXiv: 2108.08091.

    Article  ADS  Google Scholar 

  13. J. M. Maldacena, “Wilson loops in large \(N\) field theories,” Phys. Rev. Lett., 80, 4859–4862 (1998); arXiv: hep-th/9803002.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. N. Drukker, D. J. Gross, and H. Ooguri, “Wilson loops and minimal surfaces,” Phys. Rev. D, 60, 125006, 20 pp. (1999); arXiv: hep-th/9904191.

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S. Yankielowicz, “Wilson loops in the large \(N\) limit at finite temperature,” Phys. Lett. B, 434, 36–40 (1998); arXiv: hep-th/9803137.

    Article  ADS  MATH  Google Scholar 

  16. Y. Kinar, E. Schreiber, and J. Sonnenschein, “\(Q\bar Q\) potential from strings in curved space-time — classical results,” Nucl. Phys. B, 566, 103–125 (2000); arXiv: hep-th/9811192.

    Article  ADS  MATH  Google Scholar 

  17. S. S. Afonin and T. D. Solomko, “Gluon string breaking and meson spectrum in the holographic Soft Wall model,” Phys. Lett. B, 831, 137185, 9 pp. (2022); arXiv: 2112.00021.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. S. Afonin and T. D. Solomko, “Cornell potential in generalized soft wall holographic model,” J. Phys. G, 49, 105003 (2022); arXiv: 2208.02604.

    Article  ADS  MATH  Google Scholar 

  19. I. Ya. Aref’eva, “Holography for heavy ions collisions at LHC and NICA,” EPJ Web Conf., 164, 01014, 20 pp. (2017); arXiv: 1612.08928.

    Article  Google Scholar 

  20. S. J. Brodsky, G. F. de Téramond, H. G. Dosch, and J. Erlich, “Light-front holographic QCD and emerging confinement,” Phys. Rept., 584, 1–105 (2015); arXiv: 1407.8131.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. S. Afonin and T. D. Solomko, “Confinement potential in a soft-wall holographic model with a hydrogen-like spectrum,” Universe, 9, 114, 14 pp. (2023); arXiv: 2303.02356.

    Article  ADS  Google Scholar 

  22. S. S. Afonin and T. D. Solomko, “Confinement potential in Soft Wall holographic approach to QCD,” arXiv: 2209.07109.

Download references

Funding

This research was funded by the Russian Science Foundation (grant No. 21-12-00020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Afonin.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 216, pp. 433–444 https://doi.org/10.4213/tmf10467.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, S.S. Ultraviolet regularization of energy of two static sources in the bottom-up holographic approach to strong interactions. Theor Math Phys 216, 1278–1286 (2023). https://doi.org/10.1134/S0040577923090039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923090039

Keywords

Navigation