Skip to main content
Log in

Measuring the coupling constant of polarized fermions via sound wave spectra

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The system of hydrodynamic equations is generally limited to the continuity and Euler equations. However, taking higher moments of the distribution function into account improves the description of kinetic properties. We derive the pressure tensor evolution equation (PTEE) for spin-polarized degenerate fermions. We find that the pressure tensor enters the term describing the interaction that generalizes the \(p\)-wave interaction in the Euler equation. Hence, calculating the interaction for the PTEE allows describing the interaction in the Euler equation more accurately. The proposed model is applied to small-amplitude bulk collective excitations in homogeneous fermions and trapped fermions, yielding a method for experimental measurements of the coupling constant of polarized fermions. It is demonstrated that the anisotropy in the momentum space, manifesting itself in the difference of pressures in the anisotropy direction and the perpendicular directions, leads to a method for determining the coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. Minguzzi, P. Vignolo, M. L. Chiofalo, and M. P. Tosi, “Hydrodynamic excitations in a spin-polarized Fermi gas under harmonic confinement in one dimension,” Phys. Rev. A, 64, 033605, 5 pp. (2001).

    Article  ADS  Google Scholar 

  2. S. Hannibal, P. Kettmann, M. D. Croitoru, V. M. Axt, and T. Kuhn, “Persistent oscillations of the order parameter and interaction quench phase diagram for a confined Bardeen–Cooper–Schrieffer Fermi gas,” Phys. Rev. A, 98, 053605, 10 pp. (2018); arXiv: 1805.11378.

    Article  ADS  Google Scholar 

  3. M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim, “Observation of pair condensation in the quasi-2D BEC-BCS crossover,” Phys. Rev. Lett., 114, 230401, 5 pp. (2015); arXiv: 1409.5373.

    Article  ADS  Google Scholar 

  4. I. Boettcher, L. Bayha, D. Kedar, P. A. Murthy, M. Neidig, M. G. Ries, A. N. Wenz, G. Zürn, S. Jochim, and T. Enss, “Equation of state of ultracold fermions in the 2D BEC-BCS crossover region,” Phys. Rev. Lett., 116, 045303, 5 pp. (2016); arXiv: 1509.03610.

    Article  ADS  Google Scholar 

  5. D. Lee, “Ground-state energy of spin-\(\frac{1}{2}\) fermions in the unitary limit,” Phys. Rev. B, 73, 115112, 7 pp. (2006); arXiv: cond-mat/0511332.

    Article  ADS  Google Scholar 

  6. N. W. M. Plantz and H. T. C. Stoof, “Nonrelativistic fermions with holographic interactions and the unitary Fermi gas,” Phys. Rev. A, 99, 013606, 8 pp. (2019); arXiv: 1810.09759.

    Article  ADS  Google Scholar 

  7. B. Mukherjee, P. B. Patel, Z. Yan, R. J. Fletcher, J. Struck, and M. W. Zwierlein, “Spectral response and contact of the unitary Fermi gas,” Phys. Rev. Lett., 122, 203402, 6 pp. (2019); arXiv: 1902.08548.

    Article  ADS  Google Scholar 

  8. C. Carcy, S. Hoinka, M. G. Lingham, P. Dyke, C. C. N. Kuhn, H. Hu, and C. J. Vale, “Contact and sum rules in a near-uniform Fermi gas at unitarity,” Phys. Rev. Lett., 122, 203401, 5 pp. (2019); arXiv: 1902.07853.

    Article  ADS  Google Scholar 

  9. E. Nakano and H. Yabu, “BEC-polaron gas in a boson-fermion mixture: A many-body extension of Lee–Low–Pines theory,” Phys. Rev. B, 93, 205144, 20 pp. (2016); arXiv: 1512.04757.

    Article  ADS  Google Scholar 

  10. A. M. Belemuk and V. N. Ryzhov, “Effective Hamiltonian study of excitations in a boson-fermion mixture with attraction between components,” J. Phys. B: At. Mol. Opt. Phys., 43, 225301, 9 pp. (2010); arXiv: 1006.5805.

    Article  ADS  Google Scholar 

  11. J. E. Drut, J. R. McKenney, W. S. Daza, C. L. Lin, and C. R. Ordóñez, “Quantum anomaly and thermodynamics of one-dimensional fermions with three-body interactions,” Phys. Rev. Lett., 120, 243002, 6 pp. (2018); arXiv: 1802.01634.

    Article  ADS  Google Scholar 

  12. M. Tylutki, A. Recati, F. Dalfovo, and S. Stringari, “Dark-bright solitons in a superfluid Bose–Fermi mixture,” New J. Phys., 18, 053014, 9 pp. (2016).

    Article  ADS  Google Scholar 

  13. M. Antezza, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, “Dark solitons in a superfluid Fermi gas,” Phys. Rev. A, 76, 043610, 4 pp. (2007); arXiv: 0706.0601.

    Article  ADS  Google Scholar 

  14. M. Babadi and E. Demler, “Collective excitations of quasi-two-dimensional trapped dipolar fermions: Transition from collisionless to hydrodynamic regime,” Phys. Rev. A, 86, 063638, 26 pp. (2012); arXiv: 1209.3863.

    Article  ADS  Google Scholar 

  15. R. Roth, “Structure and stability of trapped atomic boson-fermion mixtures,” Phys. Rev. A, 66, 013614, 12 pp. (2002); arXiv: cond-mat/0203192.

    Article  ADS  Google Scholar 

  16. R. Roth and H. Feldmeier, “Effective \(s\)- and \(p\)-wave contact interactions in trapped degenerate Fermi gases,” Phys. Rev. A, 64, 043603, 17 pp. (2001); arXiv: cond-mat/0102416.

    Article  ADS  Google Scholar 

  17. M. Kulkarni and A. G. Abanov, “Hydrodynamics of cold atomic gases in the limit of weak nonlinearity, dispersion, and dissipation,” Phys. Rev. A, 86, 033614, 16 pp. (2012); arXiv: 1205.5917.

    Article  ADS  Google Scholar 

  18. I. Tokatly and O. Pankratov, “Hydrodynamic theory of an electron gas,” Phys. Rev. B, 60, 15550–15553 (1999); arXiv: cond-mat/9902316.

    Article  ADS  Google Scholar 

  19. I. Tokatly and O. Pankratov, “Hydrodynamics beyond local equilibrium: Application to electron gas,” Phys. Rev. B, 62, 2759–2772 (2000); arXiv: cond-mat/0005041.

    Article  ADS  Google Scholar 

  20. L. S. Kuz’menkov and S. G. Maksimov, “Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential,” Theoret. and Math. Phys., 118, 227–240 (1999).

    Article  ADS  MATH  Google Scholar 

  21. P. A. Andreev and L. S. Kuzmenkov, “Problem with the single-particle description and the spectra of intrinsic modes of degenerate boson-fermion systems,” Phys. Rev. A, 78, 053624, 12 pp. (2008).

    Article  ADS  Google Scholar 

  22. P. A. Andreev, “Hydrodynamic model of a Bose–Einstein condensate with anisotropic short-range interaction and bright solitons in a repulsive Bose–Einstein condensate,” Laser Phys., 29, 035502 (2019).

    Article  ADS  Google Scholar 

  23. N. G. Parker and D. A. Smith, “\(p\)-wave stabilization of three-dimensional Bose–Fermi solitons,” Phys. Rev. A, 85, 013604, 9 pp. (2012); arXiv: 1108.3453.

    Article  ADS  Google Scholar 

  24. P. A. Andreev, “Spin current contribution in the spectrum of collective excitations of degenerate partially polarized spin-1/2 fermions at separate dynamics of spin-up and spin-down fermions,” Laser Phys. Lett., 15, 105501 (2018).

    Article  ADS  Google Scholar 

  25. P. A. Andreev, “Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance,” Phys. Rev. E, 91, 033111, 11 pp. (2015); arXiv: 1405.0719.

    Article  ADS  Google Scholar 

  26. P. A. Andreev, “Extended hydrodynamics of degenerate partially spin polarized fermions with short-range interaction up to the third order by interaction radius approximation,” Laser Phys., 31, 045501, 28 pp. (2021).

    Article  ADS  Google Scholar 

  27. A. Csordas and R. Graham, “Collective excitations of degenerate Fermi gases in anisotropic parabolic traps,” Phys. Rev. A, 63, 013606, 8 pp. (2000); arXiv: cond-mat/0007049.

    Article  ADS  Google Scholar 

  28. A. Griffin, W.-C. Wu, and S. Stringari, “Hydrodynamic modes in a trapped Bose gas above the Bose–Einstein transition,” Phys. Rev. Lett., 78, 1838–1841 (1997); arXiv: cond-mat/9610187.

    Article  ADS  Google Scholar 

  29. Z. Wang, M. Cherkasskii, B. A. Kalinikos, L. D. Carr, and M. Wu, “Formation of bright solitons from wave packets with repulsive nonlinearity,” New J. Phys., 16, 053048, 10 pp. (2014).

    Article  ADS  Google Scholar 

  30. P. A. Andreev and L. S. Kuz’menkov, “Bright-like soliton solution in quasi-one-dimensional BEC in third order by interaction radius,” Modern Phys. Lett., 26, 1250152 (2012); arXiv: 1105.5537.

    Article  ADS  Google Scholar 

  31. H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, “Observing the Rosensweig instability of a quantum ferrofluid,” Nature, 530, 194–197 (2016); arXiv: 1508.05007.

    Article  ADS  Google Scholar 

  32. D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, “Self-bound dipolar droplet: A localized matter-wave in free space,” Phys. Rev. A, 94, 021602, 5 pp. (2016); arXiv: 1606.00824.

    Article  ADS  Google Scholar 

  33. A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, “Observation of Fermi pressure in a gas of trapped atoms,” Science, 291, 2570–2572 (2001).

    Article  ADS  Google Scholar 

  34. F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, “Quasipure Bose–Einstein condensate immersed in a Fermi sea,” Phys. Rev. Lett., 87, 080403, 4 pp. (2001).

    Article  ADS  Google Scholar 

  35. Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz, and W. Ketterle, “Two-species mixture of quantum degenerate Bose and Fermi gases,” Phys. Rev. Lett., 88, 160401, 4 pp. (2002); arXiv: cond-mat/0112425.

    Article  ADS  Google Scholar 

  36. G. Roati, F. Riboli, G. Modugno, and M. Inguscio, “Fermi–Bose quantum degenerate \(^{40}\)K–\(^{87}\)Rb mixture with attractive interaction,” Phys. Rev. Lett., 89, 150403, 4 pp. (2002); arXiv: cond-mat/0205015.

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the Russian Foundation for Basic Research (grant No. 20-02-00476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Andreev.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 523–537 https://doi.org/10.4213/tmf10299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, P.A. Measuring the coupling constant of polarized fermions via sound wave spectra. Theor Math Phys 213, 1762–1773 (2022). https://doi.org/10.1134/S0040577922120091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922120091

Keywords

Navigation