Skip to main content
Log in

Elastic collision rates of spin-polarized fermions in two dimensions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the p-wave elastic collision rates in a two-dimensional spin-polarized ultracold Fermi gas in the presence of a p-wave Feshbach resonance. We derive the analytical relation of the elastic collision rate coefficient in the close vicinity of resonance when the effective range is dominant. The elastic collision rate is enhanced by an exponential scaling of \(e^{-q_{\textrm{r}}^{2}/q_{\textrm{T}}^{2}}\) towards the resonance. Here, \(q_{\textrm{r}}\) is the resonant momentum and \(q_{\textrm{T}}\) is the thermal momentum. An analogous expression derived for the case of three dimensions successfully explains the thermalization rates measurement in the recent experiment (Phys Rev A 88:012710, 2013). In the zero-range limit where the effective range is negligible, the elastic collision rate coefficient is proportional to temperature \(T^2\) and scattering area \(A_{\textrm{p}}^2\). Using these elastic collision rates, we studied the energy transfer from high to low velocity through p-wave collision. We also discuss the collisional stability in the presence of three-body losses in the background scattering limit. Our results may provide insight into the dynamics of the two-dimensional spin-polarized ultracold Fermi gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data underlying the results presented in this paper may be obtained from the authors upon reasonable request.]

References

  1. B. DeMarco, J.L. Bohn, J.P. Burke, M. Holland, D.S. Jin, Phys. Rev. Lett. 82, 4208 (1999). https://doi.org/10.1103/PhysRevLett.82.4208

    Article  CAS  ADS  Google Scholar 

  2. J. Zhang, E.G.M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, C. Salomon, Phys. Rev. A 70, 030702(R) (2004). https://doi.org/10.1103/PhysRevA.70.030702

    Article  CAS  ADS  Google Scholar 

  3. C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Phys. Rev. Lett. 90, 053201 (2003). https://doi.org/10.1103/PhysRevLett.90.053201

    Article  CAS  PubMed  ADS  Google Scholar 

  4. C.H. Schunck, M.W. Zwierlein, C.A. Stan, S.M.F. Raupach, W. Ketterle, A. Simoni, E. Tiesinga, C.J. Williams, P.S. Julienne, Phys. Rev. A 71, 045601 (2005). https://doi.org/10.1103/PhysRevA.71.045601

    Article  CAS  ADS  Google Scholar 

  5. M. Gerken, B. Tran, S. Häfner, E. Tiemann, B. Zhu, M. Weidemüller, Phys. Rev. A 100, 050701 (2019). https://doi.org/10.1103/PhysRevA.100.050701

    Article  CAS  ADS  Google Scholar 

  6. C. Ticknor, C.A. Regal, D.S. Jin, J.L. Bohn, Phys. Rev. A 69, 042712 (2004). https://doi.org/10.1103/PhysRevA.69.042712

    Article  CAS  ADS  Google Scholar 

  7. M. Waseem, Z. Zhang, J. Yoshida, K. Hattori, T. Saito, T. Mukaiyama, J. Phys. B: At. Mol. Opt. Phys. 49, 204001 (2016). https://doi.org/10.1088/0953-4075/49/20/204001

    Article  CAS  ADS  Google Scholar 

  8. J.P. Gaebler, J.T. Stewart, J.L. Bohn, D.S. Jin, Phys. Rev. Lett. 98, 200403 (2007). https://doi.org/10.1103/PhysRevLett.98.200403

    Article  CAS  PubMed  ADS  Google Scholar 

  9. J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W. Rowlands, P. Hannaford, C.J. Vale, Phys. Rev. A 77, 053616 (2008). https://doi.org/10.1103/PhysRevA.77.053616

    Article  CAS  ADS  Google Scholar 

  10. R.A.W. Maier, C. Marzok, C. Zimmermann, P.W. Courteille, Phys. Rev. A 81, 064701 (2010). https://doi.org/10.1103/PhysRevA.81.064701

    Article  CAS  ADS  Google Scholar 

  11. D.J.M. Ahmed-Braun, K.G. Jackson, S. Smale, C.J. Dale, B.A. Olsen, S.J.J.M.F. Kokkelmans, P.S. Julienne, J.H. Thywissen, Phys. Rev. Res. 3, 033269 (2021). https://doi.org/10.1103/PhysRevResearch.3.033269

    Article  CAS  Google Scholar 

  12. A. Crubellier, R. González-Férez, C.P. Koch, E. Luc-Koenig, Phys. Rev. A 99, 032710(R) (2019). https://doi.org/10.1103/PhysRevA.99.032710

    Article  ADS  Google Scholar 

  13. S. Ding, S. Zhang, Phys. Rev. Lett. 123, 070404 (2019). https://doi.org/10.1103/PhysRevLett.123.070404

    Article  CAS  PubMed  ADS  Google Scholar 

  14. J. Yao, S. Zhang, Phys. Rev. A 97, 043612 (2018). https://doi.org/10.1103/PhysRevA.97.043612

    Article  CAS  ADS  Google Scholar 

  15. M. Schmidt, H.-W. Hammer, L. Platter, Phys. Rev. A 101, 062702 (2020). https://doi.org/10.1103/PhysRevA.101.062702

    Article  CAS  ADS  Google Scholar 

  16. M. Waseem, J. Yoshida, T. Saito, T. Mukaiyama, Phys. Rev. A 98, 020702(R) (2018). https://doi.org/10.1103/PhysRevA.98.020702

    Article  ADS  Google Scholar 

  17. J. Yoshida, T. Saito, M. Waseem, K. Hattori, T. Mukaiyama, Phys. Rev. Lett. 120, 133401 (2018). https://doi.org/10.1103/PhysRevLett.120.133401

    Article  CAS  PubMed  ADS  Google Scholar 

  18. H. Suno, B.D. Esry, C.H. Greene, Phys. Rev. Lett. 90, 053202 (2003). https://doi.org/10.1103/PhysRevLett.90.053202

    Article  CAS  PubMed  ADS  Google Scholar 

  19. M.D. Higgins, C.H. Greene, Phys. Rev. A 106, 023304 (2022). https://doi.org/10.1103/PhysRevA.106.023304

    Article  CAS  ADS  Google Scholar 

  20. S. Zhu, Z. Yu, S. Zhang, Phys. Rev. A 106, 063309 (2022). https://doi.org/10.1103/PhysRevA.106.063309

    Article  CAS  ADS  Google Scholar 

  21. B.D. Esry, C.H. Greene, H. Suno, Phys. Rev. A 65, 010705(R) (2001). https://doi.org/10.1103/PhysRevA.65.010705

    Article  CAS  ADS  Google Scholar 

  22. C. Luciuk, S. Trotzky, S. Smale, Z. Yu, S. Zhang, J.H. Thywissen, Nature Phys. 12, 599 (2016). https://doi.org/10.1038/nphys3670

    Article  CAS  ADS  Google Scholar 

  23. Z. Yu, J.H. Thywissen, S. Zhang, Phys. Rev. Lett. 115, 135304 (2015). https://doi.org/10.1103/PhysRevLett.115.135304

    Article  CAS  PubMed  ADS  Google Scholar 

  24. S.M. Yoshida, M. Ueda, Phys. Rev. Lett. 115, 135303 (2015). https://doi.org/10.1103/PhysRevLett.115.135303

    Article  CAS  PubMed  ADS  Google Scholar 

  25. G. Liu, Y.-C. Zhang, Europhys. Lett. 122, 40006 (2018). https://doi.org/10.1209/0295-5075/122/40006

    Article  CAS  ADS  Google Scholar 

  26. G. Bertaina, M.G. Tarallo, S. Pilati, Phys. Rev. A 107, 053305 (2023). https://doi.org/10.1103/PhysRevA.107.053305

    Article  CAS  ADS  Google Scholar 

  27. V. Venu, P. Xu, M. Mamaev, F. Corapi, T. Bilitewski, J.P. D’Incao, C.J. Fujiwara, A.M. Rey, J.H. Thywissen, Nature 613, 262 (2023). https://doi.org/10.1038/s41586-022-05405-6

    Article  CAS  PubMed  ADS  Google Scholar 

  28. W. Kohn, J.M. Luttinger, Phys. Rev. Lett. 15, 524 (1965). https://doi.org/10.1103/PhysRevLett.15.524

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Kojima, H. Ishimoto, J. Phys. Soc. Jpn. 77, 111001 (2008). https://doi.org/10.1143/JPSJ.77.111001

    Article  CAS  ADS  Google Scholar 

  30. M. Leduc, J. Phys. Colloques 51, C6 (1990). https://doi.org/10.1051/jphyscol:1990625

    Article  Google Scholar 

  31. A.K. Fedorov, V.I. Yudson, G.V. Shlyapnikov, Phys. Rev. A 95, 043615 (2017). https://doi.org/10.1103/PhysRevA.95.043615

    Article  ADS  Google Scholar 

  32. N.D. Lemke, J. von Stecher, J.A. Sherman, A.M. Rey, C.W. Oates, A.D. Ludlow, Phys. Rev. Lett. 107, 103902 (2011). https://doi.org/10.1103/PhysRevLett.107.103902

    Article  CAS  PubMed  ADS  Google Scholar 

  33. V. Gurarie, L. Radzihovsky, A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005). https://doi.org/10.1103/PhysRevLett.94.230403

    Article  CAS  PubMed  ADS  Google Scholar 

  34. T. Nakasuji, J. Yoshida, T. Mukaiyama, Phys. Rev. A 88, 012710 (2013). https://doi.org/10.1103/PhysRevA.88.012710

    Article  CAS  ADS  Google Scholar 

  35. F.C. Top, Y. Margalit, W. Ketterle, Phys. Rev. A 104, 043311 (2021). https://doi.org/10.1103/PhysRevA.104.043311

    Article  CAS  ADS  Google Scholar 

  36. K. Welz, M. Gerken, B. Zhu, E. Lippi, M. Rautenberg, L. Chomaz, M. Weidemüller, Phys. Rev. A 107, 053310(R) (2023). https://doi.org/10.1103/PhysRevA.107.053310

    Article  ADS  Google Scholar 

  37. Y. Inada, M. Horikoshi, S. Nakajima, M. Kuwata-Gonokami, M. Ueda, T. Mukaiyama, Phys. Rev. Lett. 101, 100401 (2008). https://doi.org/10.1103/PhysRevLett.101.100401

    Article  CAS  PubMed  ADS  Google Scholar 

  38. J. Levinsen, N.R. Cooper, V. Gurarie, Phys. Rev. A 78, 063616 (2008). https://doi.org/10.1103/PhysRevA.78.063616

    Article  CAS  ADS  Google Scholar 

  39. D.V. Kurlov, G.V. Shlyapnikov, Phys. Rev. A 95, 032710 (2017). https://doi.org/10.1103/PhysRevA.95.032710

    Article  ADS  Google Scholar 

  40. N. Read, D. Green, Phys. Rev. B 61, 10267 (2000). https://doi.org/10.1103/PhysRevB.61.10267

    Article  CAS  ADS  Google Scholar 

  41. D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001). https://doi.org/10.1103/PhysRevLett.86.268

    Article  CAS  PubMed  ADS  Google Scholar 

  42. F. Yang, S.-J. Jiang, F. Zhou, Phys. Rev. Lett. 124, 225701 (2020). https://doi.org/10.1103/PhysRevLett.124.225701

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Y. Nishida, S. Moroz, D.T. Son, Phys. Rev. Lett. 110, 235301 (2013). https://doi.org/10.1103/PhysRevLett.110.235301

    Article  CAS  PubMed  ADS  Google Scholar 

  44. H. Hu, X.-J. Liu, Phys. Rev. A 100, 023611 (2019). https://doi.org/10.1103/PhysRevA.100.023611

    Article  CAS  ADS  Google Scholar 

  45. M.E. Gehm, S.L. Hemmer, K.M. O’Hara, J.E. Thomas, Phys. Rev. A 68, 011603(R) (2003). https://doi.org/10.1103/PhysRevA.68.011603

    Article  CAS  ADS  Google Scholar 

  46. S. Häusler, P. Fabritius, J. Mohan, M. Lebrat, L. Corman, T. Esslinger, Phys. Rev. X 11, 021034 (2021). https://doi.org/10.1103/PhysRevX.11.021034

    Article  Google Scholar 

  47. J. Maki, T. Enss, Phys. Rev. A 107, 023317 (2023). https://doi.org/10.1103/PhysRevA.107.023317

    Article  CAS  ADS  Google Scholar 

  48. K. Günter, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Phys. Rev. Lett. 95, 230401 (2005). https://doi.org/10.1103/PhysRevLett.95.230401

    Article  CAS  PubMed  ADS  Google Scholar 

  49. L. Pricoupenko, Phys. Rev. Lett. 100, 170404 (2008). https://doi.org/10.1103/PhysRevLett.100.170404

    Article  CAS  PubMed  ADS  Google Scholar 

  50. P. Zhang, Z. Yu, Phys. Rev. A 95, 033611 (2017). https://doi.org/10.1103/PhysRevA.95.033611

    Article  ADS  Google Scholar 

  51. Y.-C. Zhang, S. Zhang, Phys. Rev. A 95, 023603 (2017). https://doi.org/10.1103/PhysRevA.95.023603

    Article  ADS  Google Scholar 

  52. S.-G. Peng, S. Tan, K. Jiang, Phys. Rev. Lett. 112, 250401 (2014). https://doi.org/10.1103/PhysRevLett.112.250401

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Z. Idziaszek, Phys. Rev. A 79, 062701 (2009). https://doi.org/10.1103/PhysRevA.79.062701

    Article  CAS  ADS  Google Scholar 

  54. M. Lysebo, L. Veseth, Phys. Rev. A 79, 062704 (2009). https://doi.org/10.1103/PhysRevA.79.062704

    Article  CAS  ADS  Google Scholar 

  55. P. Zhang, P. Naidon, M. Ueda, Phys. Rev. A 82, 062712 (2010). https://doi.org/10.1103/PhysRevA.82.062712

    Article  CAS  ADS  Google Scholar 

  56. B. Zhu, G. Quéméner, A.M. Rey, M.J. Holland, Phys. Rev. A 88, 063405 (2013). https://doi.org/10.1103/PhysRevA.88.063405

    Article  CAS  ADS  Google Scholar 

  57. C.R. Monroe, E.A. Cornell, C.A. Sackett, C.J. Myatt, C.E. Wieman, Phys. Rev. Lett. 70, 414 (1993). https://doi.org/10.1103/PhysRevLett.70.414

    Article  CAS  PubMed  ADS  Google Scholar 

  58. M. Waseem, J. Yoshida, T. Saito, T. Mukaiyama, Phys. Rev. A 99, 052704 (2019). https://doi.org/10.1103/PhysRevA.99.052704

    Article  CAS  ADS  Google Scholar 

  59. K.B. Davis, M.O. Mewes, W. Ketterle, Appl. Phys. B 60, 155 (1995). https://doi.org/10.1007/BF01135857

    Article  ADS  Google Scholar 

  60. O.J. Luiten, M.W. Reynolds, J.T.M. Walraven, Phys. Rev. A 53, 381 (1996). https://doi.org/10.1103/PhysRevA.53.381

    Article  CAS  PubMed  ADS  Google Scholar 

  61. D. Wilkowski, J. Phys. B: At. Mol. Opt. Phys. 43, 205306 (2010). https://doi.org/10.1088/0953-4075/43/20/205306

    Article  CAS  ADS  Google Scholar 

  62. B.S. Rem, A.T. Grier, I. Ferrier-Barbut, U. Eismann, T. Langen, N. Navon, L. Khaykovich, F. Werner, D.S. Petrov, F. Chevy, C. Salomon, Phys. Rev. Lett. 110, 163202 (2013). https://doi.org/10.1103/PhysRevLett.110.163202

    Article  CAS  PubMed  ADS  Google Scholar 

  63. M. Waseem, T. Saito, J. Yoshida, T. Mukaiyama, Phys. Rev. A 96, 062704 (2017). https://doi.org/10.1103/PhysRevA.96.062704

    Article  ADS  Google Scholar 

  64. H. Suno, B.D. Esry, C.H. Greene, New J. Phys. 5, 53 (2003). https://doi.org/10.1088/1367-2630/5/1/353

    Article  ADS  Google Scholar 

  65. E. Nielsen, J.H. Macek, Phys. Rev. Lett. 83, 1566 (1999). https://doi.org/10.1103/PhysRevLett.83.1566

    Article  CAS  ADS  Google Scholar 

  66. J.P. D’Incao, F. Anis, B.D. Esry, Phys. Rev. A 91, 062710 (2015). https://doi.org/10.1103/PhysRevA.91.062710

    Article  CAS  ADS  Google Scholar 

  67. R.J. Fletcher, A.L. Gaunt, N. Navon, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 111, 125303 (2013). https://doi.org/10.1103/PhysRevLett.111.125303

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the fruitful discussions with Yair Margalit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Waseem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A: Elastic collision rates in three dimensions

Appendix A: Elastic collision rates in three dimensions

The scattering amplitude for p-wave interaction between two fermions with relative wave vector k in three dimension is given by

$$\begin{aligned} f(k)=\frac{-k^2}{1/V_{p}+k_e k^2+i k^3}. \end{aligned}$$
(A1)

Here, \(V_{p}\) is scattering volume and \(k_e > 0\) is the effective range. The p-wave S-matrix element is given by \(S(k)= \exp\) \((2 i \delta (k))\). The elastic rate constant is \(K=v \sigma (k)\), where \(\sigma (k)=3 \pi \left| 1-S(k)\right| ^{2} /k^{2}\) is the p-wave elastic scattering cross-section, and \(v=2 \hbar k / m\) is the relative velocity. As a result, the elastic rate coefficient becomes

$$\begin{aligned} K= {\frac{24\pi \hbar }{m}}{\frac{k^5}{(1/V_{p}+k_e k^2)^2 + k^6}}. \end{aligned}$$
(A2)

Very close to the resonance when \(V_{p} \rightarrow \infty\), the largest contribution comes from the momenta of resonant bound state \(k_r= 1 /\sqrt{k_e|V_{p}|}\). In the close vicinity of resonant regime, \(k_{T} \gg k_r\), where \(k_{T}=\sqrt{3\,m k_BT/2\hbar ^2}\) is the thermal momentum. As a result, only a small fraction of relative momenta contributes to the collision process. Following the procedure similar to the two-dimensional case in the main text, we find the expression for the elastic collision rate coefficient

$$\begin{aligned} \langle K\rangle ^n=\frac{96{\pi }^{3/2}\hbar }{m k_e}{\left( \frac{k_r}{k_{T}}\right) ^3} e^{-\left( k^2_{r}/k^2_{T} \right) }. \end{aligned}$$
(A3)

Thermalization rates can be obtained from the above equation as

$$\begin{aligned} \Gamma _{th}= \langle n \rangle \times \langle K\rangle ^{n}/ \alpha . \end{aligned}$$
(A4)

The mean density for a three-dimensional harmonically trapped Fermi gas at temperature T in the Boltzmann regime is given by \(\left\langle n \right\rangle ={\frac{1}{48}}{\left( \frac{mk_B}{{\hbar ^2\pi }}\right) ^{3/2}} {\frac{T_F^3}{T^{3/2}}}\) [35]. The dashed curves in Fig. 4 show the fitted thermalization rates \(\Gamma\) in comparison to the experimental data from Ref. [34] for four different sets of temperatures. During the fitting we kept all scattering parameters fixed and kept the mean density as the only free parameter. The expression A4 successfully reproduces the experimental results in the narrow range where interaction is sufficiently strong. The mean density obtained from fitting differs from the measured density of approximately \(50 \%\) due to uncertainty in the estimation of atom numbers in the trap and as well as trap conditions such as trapping frequencies.

Fig. 4
figure 4

Thermalization rates close to p-wave Feshbach resonance at \(B-B_0=159.17(5)G\) from publication of Nakasuji et al. [34] for four different sets of temperatures. The dashed curves show the result obtained from Eq. A4 with all fixed scattering parameters, which successfully reproduces the experimental results in a narrow range closer to the resonance

At sufficiently far away from the resonance, interaction is weak (\(V_{p} \rightarrow 0\)) and \(k_{T} \ll k_r\). In this regime, elastic collision rates can be approximated as [35]

$$\begin{aligned} \Gamma ^f= \left\langle n \right\rangle \times \frac{288\sqrt{\pi }V_{p}^2 m^{3/2}}{{\hbar }^4} { \left( k_BT \right) }^{\frac{5}{2}}. \end{aligned}$$
(A5)

The ratio of elastic scattering rate for an atom with velocity \(v\) compared to average scattering rate \(\Gamma ^{f}\) [35]:

$$\begin{aligned} {\tilde{\Gamma }} =\frac{\int _0^\infty \int _0^{\pi } \left( {\tilde{u}}^2+u^2-2{\tilde{u}}u \cos \theta \right) ^{5/2} \sin \theta \textrm{d}\theta u^2 e^{-u^2} \textrm{d}u}{24 \sqrt{3}} \end{aligned}$$
(A6)

At zero velocity one can substitute \(v=0\) (\({\tilde{u}}=0\)) in Eq. A6 and in Eq. 13, which results the ratio \({\tilde{\gamma }}/{\tilde{\Gamma }}=\sqrt{2}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, M.A., Mukaiyama, T. & Waseem, M. Elastic collision rates of spin-polarized fermions in two dimensions. Eur. Phys. J. Plus 139, 163 (2024). https://doi.org/10.1140/epjp/s13360-024-04954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04954-1

Navigation