Skip to main content
Log in

Green–Kubo formula for electrical conductivity of a driven \(0\)\(\pi\) qubit

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

One of the most important paradigms of quantum computation rests on employing the Cooper pair condensate states in a Josephson junction. In using these, the configuration of great current interest is the \(0\)\(\pi\) qubit. We present the linear response of this to an external drive by solving the Liouville equation for the phase-space distribution function. Thus, we obtain “Ohm’s law” or the expression for electrical conductivity for this system in terms of novel correlation functions. This general result has been tested for the \(0\)\(\pi\) qubit parameters that are used in recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement, and amplification,” Rev. Modern Phys., 82, 1155–1208 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P. W. Shor, “Fault-tolerant quantum computation,” in: Proceedings of 37th Conference on Foundations of Computer Science (Burlington, VT, USA, 14–16 October, 1996), IEEE Comput. Soc. Press, Los Alamitos, CA (1996), pp. 56–65; arXiv: quant-ph/9605011.

    Chapter  Google Scholar 

  3. A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation (Graduate Studies in Mathematics, Vol. 47), Amer. Math. Soc., Providence, RI (2002).

    MATH  Google Scholar 

  4. S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, “Quantum computational chemistry,” Rev. Modern Phys., 92, 015003, 51 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Jain, R. Sehgal, and R. V. Jayaram, “Quantum computation – a sign of quantum supremacy,” Bombay Technologist, 68, 6 (2021).

    Article  Google Scholar 

  6. R. Kubo, “Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems,” J. Phys. Soc. Japan, 12, 570–586 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, (Cambridge Lecture Notes in Physics, Vol. 14), Cambridge Univ. Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  8. E. Helfand, “Transport coefficients from dissipation in a canonical ensemble,” Phys. Rev., 119, 1–9 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. P. C. Martin, Measurements and Correlation Functions, Gordon and Breach, New York (1968).

    Google Scholar 

  10. D. A. McQuarrie, Statistical Mechanics, Harper & Row, New York (1976).

    MATH  Google Scholar 

  11. X.-G. Wen, Quantum Field Theory of Many-Body Systems, Oxford Univ. Press, Oxford (2004).

    Google Scholar 

  12. A. Kitaev, “Protected qubit based on a superconducting current mirror,” arXiv: cond-mat/0609441.

  13. S. R. Jain and A. K. Pati, “Adiabatic geometric phases and response functions,” Phys. Rev. Lett., 80, 650–653 (1998); arXiv: chao-dyn/9804037.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. P. Brooks, A. Kitaev, and J. Preskill, “Protected gates for superconducting qubits,” Phys. Rev. A, 87, 052306, 26 pp. (2013); arXiv: 1302.4122.

    Article  ADS  Google Scholar 

  15. P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Appl. Phys. Rev., 6, 021318, 57 pp. (2019).

    Article  ADS  Google Scholar 

  16. R. K. Saini, R. Sehgal, and S. R. Jain, “Protection of qubits by nonlinear resonances,” Eur. Phys. J. Plus, 137, 356 (2022); arXiv: 2011.10329.

    Article  Google Scholar 

  17. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, (Applied Mathematical Sciences, Vol. 38), Springer, New York (1983).

    MATH  Google Scholar 

  18. S. R. Jain and R. Samajdar, “Nodal portraits of quantum billiards: Domains, lines, and statistics,” Rev. Modern Phys., 89, 045005, 66 pp. (2017); arXiv: 1709.03650.

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Wax (ed.), Selected Papers on Noise and Stochastic Processes, Dover, New York (2017).

    MATH  Google Scholar 

  20. J. M. Dempster, B. Fu, D. G. Ferguson, D. I. Schuster, and J. Koch, “Understanding degenerate ground states of a protected quantum circuit in the presence of disorder,” Phys. Rev. B, 90, 094518, 12 pp. (2014); arXiv: 1402.7310.

    Article  ADS  Google Scholar 

  21. G. Rajpoot, K. Kumari, S. Joshi, and S. R. Jain, “The tunable \(0\)\(\pi\) qubit: Dynamics and relaxation,” Internat. J. Quantum Inf., 20, 2150032, 19 pp. (2022).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. X. You, J. A. Sauls, and J. Koch, “Circuit quantization in the presence of time-dependent external flux,” Phys. Rev. B, 99, 174512, 10 pp. (2019); arXiv: 1902.04734.

    Article  ADS  Google Scholar 

  23. M. H. Devoret, “Quantum fluctuations in electrical circuits,” in: Symmétries quantiques [Quantum Symmetries] (Proceedings of the Les Houches Summer School, Session LXIII, Les Houches, France, June 27 – July 28, 1995, S. Reynaud, E. Giacobino, and J. Zinn-Justin, eds.), Elsevier, Amsterdam (1996), pp. 351–386.

    Google Scholar 

  24. U. Vool and M. Devoret, “Introduction to quantum electromagnetic circuits,” Internat. J. Circuit Theory Appl., 45, 897–934 (2017).

    Article  Google Scholar 

  25. D. K. Weiss, A. C. Y. Li, D. G. Ferguson, and J. Koch, “Spectrum and coherence properties of the current-mirror qubit,” Phys. Rev. B, 100, 224507, 17 pp. (2019); arXiv: 1908.04615.

    Article  ADS  Google Scholar 

  26. D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective, Univ. Sci. Books, Sausilito, CA (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajpoot.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 482–494 https://doi.org/10.4213/tmf10305.

Appendix: Kinetic energy part of Hamiltonian

The gauge invariant kinetic energy term of the circuit of the \(0\)\(\pi\) qubit with the effect of a time-dependent external flux can be calculated as [22]

$$\begin{aligned} \, \mathcal L_{\mathrm K}^{}(\vec{\boldsymbol\Phi},\dot{\vec{\boldsymbol\Phi}},t)= \frac{1}{4C_\Sigma}\bigl[4C_\Sigma^{} \bigl(C_\Sigma^{}\dot\Phi_1^2+2\dot\Phi_1^{}\dot\Phi_2^{}+2\dot\Phi_2^2&-2C_{\mathrm J}^{}\dot\Phi_2^{}\dot\Phi_3^{}+C_{\mathrm J}^{}\dot\Phi_3^2+C_C^{}C_{\mathrm J}^{}\dot\Phi_{ \mathrm{ext} ,1}^{}(t)+\dot\Phi_{ \mathrm{ext} ,3}^{}(t)\bigr)^2\bigr], \end{aligned}$$
(A.1)
where \(\vec{\boldsymbol\Phi}\) and \(\dot{\vec{\boldsymbol\Phi}}\) include all three components of \(\boldsymbol\Phi\) and \(\dot{\boldsymbol\Phi}\), and \(C_\Sigma=C_C+ C_{\mathrm J}\). The Hamiltonian for the circuit can be calculated using Legendre transformation. In the kinetic energy part of the Hamiltonian \(\mathcal H^{(0)}_{\mathrm K}\), the constants \(A,B,\ldots,F\) can be calculated as
$$ \begin{aligned} \, &A=\frac{1}{32C_C^{}C_{\mathrm J}^{}C_\Sigma^3} \bigl[2C_{\mathrm J}^{}(16C_C^3+39C_C^2C_{\mathrm J}^{}+29C_C^{}C_{\mathrm J}^2+7C_{\mathrm J}^3)\bigr], \\ &B=\frac{1}{32C_C^{}C_{\mathrm J}^{}C_\Sigma^3} \bigl[2C_{\mathrm J}^{}C_\Sigma^2(C_C^{}+7C_\Sigma^{})\bigr], \\ &C=\frac{1}{32C_C^{}C_{\mathrm J}^{}C_\Sigma^3} \bigl[C_\Sigma^2(14C_C^2+27C_C^{}C_{\mathrm J}^{}+14C_{\mathrm J}^2)\bigr], \\ &D=\frac{1}{32C_C^{}C_{\mathrm J}^{}C_\Sigma^3}\bigl[-4C_{\mathrm J}^{}C_\Sigma^2(C_C+7C_\Sigma^{})\bigr], \\ &E=\frac{28C_{\mathrm J}^{}C_\Sigma^3}{32 C_C^{}C_{\mathrm J}^{}C_\Sigma^3}, \\ &F=\frac{1}{32C_C^{}C_{\mathrm J}^{}C_\Sigma^3}[-2C_{\mathrm J}^{}C_\Sigma^{}(14C_C^2+29C_C^{}C_{\mathrm J}^{}+14C_{\mathrm J}^2)]. \end{aligned}$$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajpoot, G., Kumari, K., Joshi, S. et al. Green–Kubo formula for electrical conductivity of a driven \(0\)\(\pi\) qubit. Theor Math Phys 213, 1727–1737 (2022). https://doi.org/10.1134/S0040577922120066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922120066

Keywords

Navigation