Skip to main content
Log in

Cauchy matrix approach to the noncommutative Kadomtsev–Petviashvili equation with self-consistent sources

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a direct method, the Cauchy matrix approach, to construct matrix solutions of noncommutative soliton equations. This approach is based on the Sylvester equation, and solutions can be presented without using quasideterminants. The matrix Kadomtsev–Petviashvili equation with self-consistent sources is employed as an example to demonstrate the approach. As a reduction, explicit solutions of the matrix Mel’nikov model for long–short wave interaction are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA (1994).

    MATH  Google Scholar 

  2. A. de Goursac, J.-C. Wallet, and R. Wulkenhaar, “Noncommutative induced gauge theory,” Eur. Phys. J. C, 51, 977–987 (2007); arXiv: hep-th/0703075.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP, 1999, 032, 93 pp. (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Grosse and M. Wohlgenannt, “Induced gauge theory on a noncommutative space,” Eur. Phys. J. C, 52, 435–450 (2007); arXiv: hep-th/0703169.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. B. Jučo, L. Möller, S. Schraml, P. Schupp, and J. Wess, “Construction of non-Abelian gauge theories on noncommutative spaces,” Eur. Phys. J. C, 21, 383–388 (2001); arXiv: hep-th/0104153.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Connes, M. R. Douglas, and A. Schwarz, “Noncommutative geometry and matrix theory: Compactification on tori,” JHEP, 1998, 003, 35 pp. (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. A. Harvey, P. Kraus, F. Larsen, and E. J. Martinec, “D-branes and strings as non-commutative solitons,” JHEP, 2000, 042, 29 pp. (2000).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Nekrasov and A. Schwarz, “Instantons on noncommutative \(\mathbb R^4\), and \((2,0)\) superconformal six dimensional theory,” Commun. Math. Phys., 198, 689–703 (1998); arXiv: hep-th/9802068.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M. Hamanaka and K. Toda, “Towards noncommutative integrable systems,” Phys. Lett. A, 316, 77–83 (2002); arXiv: hep-th/0211148.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. K. Takasaki, “Anti-self-dual Yang–Mills equations on noncommutative space-time,” J. Geom. Phys., 37, 291–306 (2001); arXiv: hep-th/0005194.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C. A. Labelle and P. Mathieu, “A new \(N=2\) supersymmetric Korteweg–de Vries equation,” J. Math. Phys., 32, 923–927 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Q. P. Liu, “Darboux transformations for the supersymmetric Korteweg–de Vries equations,” Lett. Math. Phys., 35, 115–122 (1995); arXiv: hep-th/9409008.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Q. P. Liu and M. Mañas, “Darboux transformations for super-symmetric KP hierarchies,” Phys. Lett. B, 485, 293–300 (2000); arXiv: solv-int/9909016.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Y. I. Manin and A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy,” Commun. Math. Phys., 98, 65–77 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. W. Oevel and Z. Popowicz, “The bi-Hamiltonian structure of fully supersymmetric Korteweg–de Vries systems,” Commun. Math. Phys., 139, 441–460 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Z. Popowicz, “The Lax formulation of the new \(N=2\) SUSY KdV equation,” Phys. Lett. A, 174, 411–415 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Dimakis and F. Müller-Hoissen, “Dispersionless limit of the noncommutative potential KP hierarchy and solutions of the pseudodual chiral model in \(2+1\) dimensions,” J. Phys. A: Math. Theor., 41, 265203, 33 pp. (2008); arXiv: 0706.1373.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. C. R. Gilson and J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation,” J. Phys. A: Math. Theor., 40, 3839–3850 (2007); arXiv: 0711.3733.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. C. R. Gilson, J. C. Nimmo, and C. M. Sooman, “Matrix solutions of a noncommutative KP equation and a noncommutative mKP equation,” Theoret. and Math. Phys., 159, 796–805 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. C. X. Li and J. J. C. Nimmo, “A non-commutative semi-discrete Toda equation and its quasi- determinant solutions,” Glasg. Math. J., 51, 121–127 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. X. Li, J. J. C. Nimmo, and K. M. Tamizhmani, “On solutions to the non-Abelian Hirota–Miwa equation and its continuum limits,” Proc. Roy. Soc. London Ser. A, 465, 1441–1451 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  22. X.-M. Zhu, D.-J. Zhang, and C.-X. Li, “Quasideterminant solutions of a noncommutative nonisospectral Kadomtsev–Petviashvili equation,” Commun. Theor. Phys., 55, 753–759 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. I. Gelfand, S. Gelfand, V. Retakh, and R. L. Wilson, “Quasideterminants,” Adv. Math., 193, 56–141 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. W. Nijhoff, J. Atkinson, and J. Hietarinta, “Soliton solutions for ABS lattice equations I. Cauchy matrix approach,” J. Phys. A: Math. Theor., 42, 404005, 34 pp. (2009).

    Article  MathSciNet  MATH  Google Scholar 

  25. D.-D. Xu, D.-J. Zhang, and S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation,” J. Nonlinear Math. Phys., 21, 382–406 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. D.-J. Zhang and S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach,” Stud. Appl. Math., 131, 72–103 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. D. Djordjević and L. G. Redekopp, “On two-dimensional packets of capillary-gravity waves,” J. Fluid Mech., 79, 703–710 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. N. Yajima and M. Oikawa, “Formation and interaction of sonic-Langmuir solitons,” Progr. Theor. Phys., 56, 1719–1739 (1976).

    Article  ADS  MATH  Google Scholar 

  29. V. K. Mel’nikov, “A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the \(x,y\) plane,” Commun. Math. Phys., 112, 639–652 (1987).

    Article  ADS  MATH  Google Scholar 

  30. R. M. Li and X. G. Geng, “On a vector long wave-short wave-type model,” Stud. Appl. Math., 144, 164–184 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  31. R. M. Li and X. G. Geng, “A matrix Yajima–Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions,” Commun. Nonlinear Sci. Numer. Simul., 90, 105408, 15 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. B. Zeng, W.-X. Ma, and R. L. Lin, “Integration of the soliton hierarchy with self-consistent sources,” J. Math. Phys., 41, 5453–5489 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. R. L. Lin, Y. B. Zeng, and W.-X. Ma, “Solving the KdV hierarchy with self-consistent sources by inverse scattering method,” Phys. A, 291, 287–298 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  34. D.-J. Zhang, “The \(N\)-soliton solutions for the modified KdV equation with self-consistent sources,” J. Phys. Soc. Japan, 71, 2649–2656 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. D.-J. Zhang, “The \(N\)-soliton solutions of some soliton equations with self-consistent sources,” Chaos Solitons Fractals, 18, 31–43 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. D.-J. Zhang, J.-B. Bi, and H.-H. Hao, “A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics,” J. Phys. A: Math. Gen., 39, 14627–14648 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. D.-J. Zhang and H. Wu, “Scattering of solitons of the modified KdV equation with self-consistent sources,” Commun. Theor. Phys., 49, 809–814 (2008).

    Article  ADS  MATH  Google Scholar 

  38. H.-J. Tian and D.-J. Zhang, “Cauchy matrix approach to integrable equations with self-consistent sources and the Yajima–Oikawa system,” Appl. Math. Lett., 103, 106165, 7 pp. (2019).

    Article  MathSciNet  MATH  Google Scholar 

  39. H.-J. Tian and D.-J. Zhang, “Cauchy matrix structure of the Mel’nikov model of long-short wave interaction,” Commun. Theor. Phys., 72, 125006, 11 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This project is supported by the NSF of China (grant Nos. 11875040, 12126352, and 12126343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-jun Zhang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 437–449 https://doi.org/10.4213/tmf10290.

Appendix A. Proof of Lemma 1

We prove Lemma 1. Direct calculation shows that \(\boldsymbol\rho\) and \(\boldsymbol\sigma\) in (3.6) satisfy Eqs. (3.7b), (3.7c), and (3.7d). In what follows, we work with Sylvester equation (3.7a). Introducing

$$\boldsymbol\Xi=\mathbf F_a(\rho(l))^{-1} \boldsymbol\Theta(\mathbf F_b^{\mathrm T}(\sigma(k)))^{-1},$$
we can rewrite (3.7a) as
$$\boldsymbol\Gamma_a(l)\mathbf F_a(\rho(l)) \boldsymbol\Xi\,\mathbf F_b^{\mathrm T}(\sigma(k)) +\mathbf F_a(\rho(l))\boldsymbol\Xi \mathbf F_b^{\mathrm T}(\sigma(k))\boldsymbol\Gamma_b^{\mathrm T}(k) =\mathbf F_a(\rho(l))\mathbf e_a\mathbf e_b^{\mathrm T} \mathbf F_b^{\mathrm T}(\sigma(k)). $$
(A.1)
Because all lower-triangle Toeplitz matrices of the same order commute, we have
$$\boldsymbol\Gamma_a(l)\mathbf F_a(\rho(l)) =\mathbf F_a(\rho(l))\boldsymbol\Gamma_a(l),\qquad \mathbf F_b^{\mathrm T}(\sigma(k))\boldsymbol\Gamma_b^{\mathrm T}(k) =\boldsymbol\Gamma_b^{\mathrm T}(k)\mathbf F_b^{\mathrm T}(\sigma(k)).$$
It then follows that Eq. (A.1) reduces to
$$\boldsymbol\Gamma_a(l)\boldsymbol\Xi +\boldsymbol\Xi\boldsymbol\Gamma_b^{\mathrm T}(k) =\mathbf e_a\mathbf e_b^{\mathrm T}=\begin{pmatrix} 1 &0 &\dots &0 \\ 0 &0 &\ddots & \vdots \\ \vdots &\ddots &\ddots &0 \\ 0 &\dots &0 &0 \end{pmatrix}_{a\times b}.$$
The condition \(k+l\ne 0\) leads to the unique solution (cf. [26])
$$\begin{aligned} \, &\boldsymbol\Xi=\{\mathbf G_{a,b}(l,k)\}_{ij} =\begin{pmatrix}{i-1}\\{i+j-2}\end{pmatrix} \frac{(-1)^{i+j}}{(l+k)^{i+j-1}}, \\ &\begin{pmatrix}{i-1}\\{i+j-2}\end{pmatrix} =\frac{(i+j-2)!}{(i-1)!\,(j-1)!}. \end{aligned} $$
(A.2)

Appendix B. Some examples of solutions

We present some examples of solutions of the matrix Mel’nikov model (4.6). For brevity, we take \(2\times2\) matrix solutions as example and choose \(\mathbf J=\mathbf I\), without giving illustrations for dynamics. However, we mention some typical features of the dynamics. We note that \(\mathbf u\) is a Hermitian matrix (see (4.3)); in the \(2\times 2\) case, there are three waves \(u_{11}\), \(u_{22}\), and \(|u_{12}|\), which is a carrier wave. It follows from (B.7) that for a given \(t\), the three waves behave in the same manner but with different initial phases: they are line solitons in the \((x,y)\) plane and an arbitrary function \(\alpha_1(z)\) (due to the self-consistent source) can freely change the velocities of these line solitons.

One-soliton solution

To obtain a \(2\times 2\) matrix one-soliton solution, we choose \(N=1\), \(n=2\), whence we have

$$\begin{aligned} \, &\mathbf L=l_1,\qquad \boldsymbol\alpha=\alpha_1,\qquad \mathbf r=(\tilde\rho_1,\hat\rho_1), \\ &\mathbf M=\tilde\rho_1\frac{1}{l_1+l_1^*}\tilde\rho_1^* +\hat\rho_1\frac{1}{l_1+l_1^*}\hat\rho_1^* =\frac{|\tilde\rho_1|^2+|\hat\rho_1|^2}{l_1+l_1^*}. \end{aligned} $$
(B.1)
The plane-wave factors are
$$\tilde\rho_1=e^{\ell(l_1)}\tilde\rho^{(0)}(l_1),\qquad \hat\rho_1=e^{\ell(l_1)}\hat\rho^{(0)}(l_1), $$
(B.2)
where \(\ell(l_1)=\ell(x,t,y;l_1)\) is a linear function of \(x\), \(y\), and \(t\) with parameters \(l_1\) and \(\hat\rho^{(0)}(l_1)\), defined by
$$\ell(l_1)=l_1x+\mathrm il_1^2y+4l_1^3t+\delta\int_0^t\alpha_1(z)\,dz. $$
(B.3)
We note that \(\alpha_1(z)\) is an arbitrary function of \(z\). Hence, we have
$$\mathbf v=\mathbf S^{(0,0)} =\mathbf r^\dagger(\mathbf I+\mathbf M)^{-1}\mathbf r=\begin{pmatrix} v_{11} &v_{12} \\ v_{21} &v_{22} \end{pmatrix}=\frac{1}{\tau} \begin{pmatrix} |\tilde\rho_1|^2 &\tilde\rho_1^*\hat\rho_1 \\ \hat\rho_1^*\tilde\rho_1 &|\hat\rho_1|^2 \end{pmatrix}, $$
(B.4)
where the \(\tau\) function is defined as the determinant of \(\mathbf I+\mathbf M\):
$$\tau=|\mathbf I+\mathbf M| =1+\frac{|\tilde\rho_1|^2+|\hat\rho_1|^2}{l_1+l_1^*} =1+\frac{|\tilde\rho_1^{(0)}|^2 +|\hat\rho_1^{(0)}|^2}{2\operatorname{Re}[l_1]} e^{2\operatorname{Re}[\ell(l_1)]}. $$
(B.5)
The matrix \(\mathbf v\) can be written as
$$\mathbf v=\frac{2\operatorname{Re}[l_1]e^{2\operatorname{Re}[\ell(l_1)]}} {2\operatorname{Re}[l_1]+(|\tilde\rho_1^{(0)}|^2+|\hat\rho_1^{(0)}|^2) e^{2\operatorname{Re}[\ell(l_1)]}}\begin{pmatrix} |\tilde\rho_1^{(0)}|^2 &(\tilde\rho_1^{(0)})^*\hat\rho_1^{(0)} \\ \tilde\rho_1^{(0)}(\hat\rho_1^{(0)})^* &|\hat\rho_1^{(0)}|^2 \end{pmatrix}, $$
(B.6)
where the matrix part is composed of initial phase terms that are independent of \(x\), \(y\), and \(t\). A solution of the matrix Mel’nikov model (4.6) is given by \(\mathbf u=2\mathbf v_x\):
$$\mathbf u=\frac{16(\operatorname{Re}[l_1])^3e^{2\operatorname{Re}[\ell(l_1)]}} {(2\operatorname{Re}[l_1]+(|\tilde\rho_1^{(0)}|^2+|\hat\rho_1^{(0)}|^2) e^{2\operatorname{Re}[\ell(l_1)]})^2}\begin{pmatrix} |\tilde\rho_1^{(0)}|^2 &(\tilde\rho_1^{(0)})^*\hat\rho_1^{(0)} \\ \tilde\rho_1^{(0)}(\hat\rho_1^{(0)})^* &|\hat\rho_1^{(0)}|^2 \end{pmatrix}. $$
(B.7)
For the source part, we assume that \(\operatorname{Re}[\alpha_1]>0\), whence we have
$$\Phi=\frac{\sqrt{\alpha_1+\alpha_1^*}}{\tau}\begin{pmatrix} \tilde\rho_1^* \\ \hat\rho_1^* \end{pmatrix} =\frac{2\operatorname{Re}[l_1]e^{2\operatorname{Re}[\ell(l_1)]+\ell^*(l_1)} \sqrt{2\operatorname{Re}[\alpha_1]}} {2\operatorname{Re}[l_1]+(|\tilde\rho_1^{(0)}|^2+|\hat\rho_1^{(0)}|^2) e^{2\operatorname{Re}[\ell(l_1)]}}\begin{pmatrix} (\tilde\rho_1^{(0)})^* \\ (\hat\rho_1^{(0)})^* \end{pmatrix}.$$

Two-soliton solution

To obtain a two-soliton solution, we write

$$\begin{aligned} \, &\mathbf L=\operatorname{diag}(l_1,l_2),\qquad \boldsymbol\alpha=\operatorname{diag}(\alpha_1,\alpha_2), \\ &\mathbf r=\begin{pmatrix} \tilde\rho_1 &\hat\rho_1 \\ \tilde\rho_2 &\hat\rho_2 \end{pmatrix},\qquad \mathbf M=\begin{pmatrix} \dfrac{|\tilde\rho_1|^2+|\hat\rho_1|^2}{l_1+l_1^*} &\dfrac{\tilde\rho_1\tilde\rho_2^*+\hat\rho_1\hat\rho_2^*}{l_1+l_2^*} \\ \dfrac{\tilde\rho_2\tilde\rho_1^*+\hat\rho_2\hat\rho_1^*}{l_2+l_1^*} &\dfrac{|\tilde\rho_2|^2+|\hat\rho_2|^2}{l_2+l_2^*} \end{pmatrix}, \end{aligned} $$
(B.8)
where
$$\begin{aligned} \, &\tilde\rho_i=e^{\ell(l_i)}\tilde\rho^{(0)}(l_i),\qquad \hat\rho_i=e^{\ell(l_i)}\hat\rho^{(0)}(l_i), \\ &\ell(l_i)=l_ix+\mathrm il_i^2y+4l_i^3t+\delta\int_0^t\alpha_i(z)\,dz,\qquad i=1,2. \end{aligned}$$
Similarly to the one-soliton case, we have
$$\begin{aligned} \, \tau&=1+\frac{|\tilde\rho_1|^2+|\hat\rho_1|^2}{l_1+l_1^*} +\frac{|\tilde\rho_2|^2+|\hat\rho_2|^2}{l_2+l_2^*}+{} \\ &\qquad{}+\frac{(|\tilde\rho_1|^2+|\hat\rho_1|^2)(|\tilde\rho_2|^2+|\hat\rho_2|^2)} {(l_1+l_1^*)(l_2+l_2^*)} -\frac{(\tilde\rho_1\tilde\rho_2^*+\hat\rho_1\hat\rho_2^*) (\tilde\rho_1^*\tilde\rho_2+\hat\rho_1^*\hat\rho_2)}{(l_1+l_2^*)(l_2+l_1^*)}= \\ &=1+e^{2\operatorname{Re}[\ell(l_1)]} \frac{|\tilde\rho_1^{(0)}|^2+|\hat\rho_1^{(0)}|^2}{2\operatorname{Re}[l_1]} +e^{2\operatorname{Re}[\ell(l_2)]} \frac{|\tilde\rho_2^{(0)}|^2+|\hat\rho_2^{(0)}|^2}{2\operatorname{Re}[l_2]}+{} \\ &\qquad{}+e^{2\operatorname{Re}[\ell(l_1+l_2)]} \biggl(\frac{(|\tilde\rho_1^{(0)}|^2+|\hat\rho_1^{(0)}|^2) (|\tilde\rho_2^{(0)}|^2+|\hat\rho_2^{(0)}|^2)} {4\operatorname{Re}[l_1]\operatorname{Re}[l_2]} -\frac{|\tilde\rho_1^{(0)}(\tilde\rho_2^{(0)})^* +\hat\rho_1^{(0)}(\hat\rho_2^{(0)})^*|^2} {|l_1+l_2^*|^2}\biggr) \end{aligned}$$
and
$$\mathbf v=\begin{pmatrix} v_{11} &v_{12} \\ v_{21} &v_{22} \end{pmatrix}=\frac{1}{\tau}\begin{pmatrix} \tilde\rho_1^* &\tilde\rho_2^* \\ \hat\rho_1^* &\hat\rho_2^* \end{pmatrix}\begin{pmatrix} 1+\dfrac{|\tilde\rho_2|^2+|\hat\rho_2|^2}{l_2+l_2^*} &-\dfrac{\tilde\rho_1\tilde\rho_2^*+\hat\rho_1\hat\rho_2^*}{l_1+l_2^*} \\ -\dfrac{\tilde\rho_2\tilde\rho_1^*+\hat\rho_2\hat\rho_1^*}{l_2+l_1^*} &1+\dfrac{|\tilde\rho_1|^2+|\hat\rho_1|^2}{l_1+l_1^*} \end{pmatrix}\begin{pmatrix} \tilde\rho_1 &\hat\rho_1 \\ \tilde\rho_2 &\hat\rho_2 \end{pmatrix}. $$
(B.9)
Assuming that \(\operatorname{Re}[\alpha_1]>0\), \(\operatorname{Re}[\alpha_2]>0\), we have
$$\begin{alignedat}{2} &T_{11}=1+\frac{|\tilde\rho_2|^2+|\hat\rho_2|^2}{l_2+l_2^*},&\qquad &T_{12}=-\frac{\tilde\rho_1\tilde\rho_2^*+\hat\rho_1\hat\rho_2^*}{l_1+l_2^*}, \\ &T_{21}=-\frac{\tilde\rho_2\tilde\rho_1^*+\hat\rho_2\hat\rho_1^*}{l_2+l_1^*},&\qquad &T_{22}=1+\frac{|\tilde\rho_1|^2+|\hat\rho_1|^2}{l_1+l_1^*}. \end{alignedat}$$
The four entries of \(\mathbf v\) are then given by
$$\begin{aligned} \, &v_{11}=|\tilde\rho_1|^2T_{11}+|\tilde\rho_2|^2T_{22} +2\operatorname{Re}[\tilde\rho_1\tilde\rho_2^*T_{21}], \\ &v_{12}=\tilde\rho_1^*\hat\rho_1T_{11} +\hat\rho_1\tilde\rho_2^*T_{21}+\tilde\rho_1^*\hat\rho_2T_{12} +\tilde\rho_2^*\hat\rho_2T_{22}, \\ &v_{21}=\tilde\rho_1\hat\rho_1^*T_{11} +\tilde\rho_1\hat\rho_2^*T_{21}+\hat\rho_1^*\tilde\rho_2T_{12} +\tilde\rho_2\hat\rho_2^*T_{22}=v_{12}^*, \\ &v_{22}=|\hat\rho_1|^2T_{11}+|\hat\rho_2|^2T_{22} +2\operatorname{Re}[\hat\rho_1\hat\rho_2^*T_{21}], \end{aligned} $$
(B.10)
and for the source part, we have
$$\begin{aligned} \, \Phi&=\frac{1}{\tau}\begin{pmatrix} \tilde\rho_1^* &\tilde\rho_2^* \\ \hat\rho_1^* &\hat\rho_2^* \end{pmatrix}\begin{pmatrix} T_{11} &T_{12} \\ T_{21} &T_{22} \end{pmatrix}\begin{pmatrix} \sqrt{2\operatorname{Re}[\alpha_1]} &0 \\ 0 &\sqrt{2\operatorname{Re}[\alpha_2]} \end{pmatrix}= \\ &=\frac{1}{\tau}\begin{pmatrix} \sqrt{2\operatorname{Re}[\alpha_1]}(\tilde\rho_1^*T_{11}+\tilde\rho_2^*T_{21}) &\sqrt{2\operatorname{Re}[\alpha_2]}(\tilde\rho_1^*T_{12}+\tilde\rho_2^*T_{22}) \\ \sqrt{2\operatorname{Re}[\alpha_1]}(\hat\rho_1^*T_{11}+\hat\rho_2^*T_{21}) &\sqrt{2\operatorname{Re}[\alpha_2]}(\hat\rho_1^*T_{12}+\hat\rho_2^*T_{22}) \end{pmatrix}. \end{aligned}$$
As we can see, the source function \(\Phi\) is no longer a row vector but a matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Li, S. & Zhang, Dj. Cauchy matrix approach to the noncommutative Kadomtsev–Petviashvili equation with self-consistent sources. Theor Math Phys 213, 1686–1697 (2022). https://doi.org/10.1134/S0040577922120030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922120030

Keywords

Navigation