Skip to main content
Log in

Resonance interaction of breathers in the Manakov system

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

By means of the dressing technique, we build multipole solutions of the focusing Manakov system under a constant background. These solutions become degenerate when the poles of the dressing function merge. We find that with a special choice of the integration constants, such solutions describe the fusion or decay of the pulsing solitons—breathers—and their wave numbers and frequencies satisfy the typical resonance condition. We investigate the different cases of such resonance interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid,” J. Appl. Mech. Tech. Phys., 9, 190–194 (1968).

    Google Scholar 

  2. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, (Lecture Notes in Physics, Vol. 661), Springer, Berlin, Heidelberg (2005).

    Book  MATH  Google Scholar 

  3. C. Sulem and P.-L. Sulem, The Nonlinear Shrodinger Equation. Self-Focusing and Wave Collapse, (Applied Mathematical Sciences, Vol. 139), Springer, New York (1999).

    MATH  Google Scholar 

  4. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York (2013).

    Google Scholar 

  5. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep., 528, 47–89 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Kharif, E. Pelinivosky, and A. Slunyaev, Rogue Waves in the Ocean, Advances in Geophysical and Environmetal Mechanics and Mathematics, Springer, Heidelberg (2009).

    MATH  Google Scholar 

  7. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves, (Fundamental Theories of Physics, Vol. 104), Kluwer, Dordrecht (1999).

    Book  MATH  Google Scholar 

  8. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys. JETP, 38, 248–253 (1974).

    ADS  Google Scholar 

  9. V. I. Nayanov, Multifield Solitons [in Russian], Fizmatlit, Moscow (2006).

    MATH  Google Scholar 

  10. L.-C. Zhao and J. Liu, “Localized nonlinear waves in a two-mode nonlinear fiber,” J. Opt. Soc. Amer. B, 29, 3119–3127 (2012).

    Article  ADS  Google Scholar 

  11. N. Vishnu Priya, M. Senthilvelan, and M. Lakshmanan, “Akhmediev breathers, Ma solitons, and general breathers from rogue waves: A case study in the Manakov system,” Phys. Rev. E, 88, 022918, 11 pp. (2013); arXiv: 1308.5565.

    Article  ADS  Google Scholar 

  12. S. Chen and D. Mihalache, “Vector rogue waves in the Manakov system: diversity and compossibility,” J. Phys. A: Math. Theor., 48, 215202, 20 pp. (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. W.-J. Chen, S.-C. Chen, C. Liu, L.-C. Zhao, and N. Akhmediev, “Non-degenerate Kuznetsov– Ma solitons of Manakov equations and their physical spectra,” Phys. Rev. A, 105, 043526, 14 pp. (2022); arXiv: 2203.03999.

    Article  ADS  Google Scholar 

  14. D. Kraus, G. Biondini, and G. Kovačič, “The focusing Manakov system with nonzero boundary conditions,” Nonlinearity, 28, 3101–3151 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. B. Prinari, M. J. Ablowitz, and G. Biondini, “Inverse scattering transform for the vector nonlinear Shrödinger equation with nonvanishing boundary conditions,” J. Math. Phys., 47, 063508, 33 pp. (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G. Biondini and D. Kraus, “Inverse scattering transorm for the defocusing Manakov system with nonzero boundary conditions,” SIAM J. Math. Anal., 47, 706–757 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Gelash and V. E. Zakharov, “Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability,” Nonlinearity, 27, R1–R39 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Y. Orlov, Soliton collapse in the integrable models (Preprint No. 221), Institute of Automation and Electrometry SB USSR Ac. Sci., Novosibirsk (1983).

  19. G. E. Fal’kovich, M. D. Spector, and S. K. Turitsyn, “Destruction of stationary solutions and collapse in the nonlnear string equation,” Phys. Lett. A, 99, 271–274 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. E. Zakharov and S. V. Manakov, “The theory of resonance interaction of wave packets in nonlinear media,” Sov. Phys. JETP, 42, 842–850 (1975).

    ADS  MathSciNet  Google Scholar 

  21. I. V. Barashenkov, B. G. Getmanov, and V. E. Kovtun, “Integrable model with non-trivial interaction between sub- and superluminal solitons,” Phys. Lett. A, 128, 182–186 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  22. I. V. Barashenkov and B. G. Getmanov, “The unified approach to integrable relativistic equations: Soliton solutions over nonvanishing backgrounds. II,” J. Math. Phys., 34, 3054–3072 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. V. E. Zakharov and A. B. Shabat, “Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II,” Funct. Anal. Appl., 13, 166–174 (1979).

    Article  MathSciNet  Google Scholar 

  24. A. A. Raskovalov and A. A. Gelash, “Resonant interactions of vector breathers,” JETP Lett., 115, 45–51 (2022).

    Article  ADS  Google Scholar 

  25. E. A. Kuznetsov, “Solitons in a parametrically unstable plasma,” Sov. Phys. Dokl., 22, 507–508 (1977).

    ADS  Google Scholar 

  26. D. J. Kaup, “The three-wave interaction – a nondispersive phenomenon,” Stud. Appl. Math., 55, 9–44 (1976).

    Article  MathSciNet  Google Scholar 

  27. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin–Heidelberg (2007).

    MATH  Google Scholar 

  28. V. A. Arkad’ev, A. K. Pogrebkov, and M. K. Polivanov, “Application of inverse scattering method to singular solutions of nonlinear equations. I,” Theoret. and Math. Phys., 53, 1051–1062 (1982); “Application of inverse scattering method to singular solutions of nonlinear equations. II,” 54, 12–22, (1983); V. A. Arkad’ev, “Application of inverse scattering method to singular solutions of nonlinear equations. III,” 58, 24–32 (1984).

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to E. A. Kuznetsov for the helpful discussions.

Funding

This work was done in the framework of the Russian Science Foundation project No. 19-72-30028 https://rscf.ru/ project/ 19-72-30028/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Raskovalov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 418–436 https://doi.org/10.4213/tmf10357.

Appendix A. “Dressing” procedure for the defocusing Manakov system on a condensate background

It is instructive to give the result yielded by the “dressing” technique when it is used to construct solutions of the defocusing Manakov system on a condensate background.

The \(U\)\(V\) pair for the defocusing Manakov system

$$i\,\partial_t\psi_j-\frac{\partial_x^2\psi_j}{2} +\psi_j(|\psi_1|^2+|\psi_2|^2-A^2)=0,\quad j=1,2;\qquad A^2=A_1^2+A_2^2, $$
(A.1)
on a condensate background \(|\psi_{1,2}|\to A_{1,2}\) and \(x\to\pm\infty\) has the form [15], [16]
$$\partial_x\Phi=U\Phi,\qquad \partial_t\Phi =V\Phi=-\biggl[\lambda U+\frac{iW}{2}\biggr]\Phi,$$
where
$$U=\begin{pmatrix} -i\lambda &\psi_1 &\psi_2 \\ \psi_1^* &i\lambda &0 \\ \psi_2^* &0 &i\lambda \end{pmatrix}, \qquad W=\begin{pmatrix} A^2-|\psi_1|^2-|\psi_2|^2 &\partial_x\psi_1 &\partial_x\psi_2 \\ -\partial_x\psi_1^* &|\psi_1|^2-A^2 &\psi_1^*\psi_2 \\ -\partial_x\psi_2^* &\psi_1\psi_2^* &|\psi_2|^2-A^2 \end{pmatrix}.$$
The “seed” solution is
$$\Phi_0(x,t,\lambda)=[(1-r^2)e^{-\varphi_0}]^{-1/3}\begin{pmatrix} 0 &e^\varphi &-ire^{-\varphi} \\[1mm] -\dfrac{A_2}{A}e^{-\varphi_0} &\dfrac{A_1}{A}ire^\varphi &\dfrac{A_1}{A}e^{-\varphi} \\[3mm] \dfrac{A_1}{A}e^{-\varphi_0} &\dfrac{A_2}{A}ire^\varphi &\dfrac{A_2}{A}e^{-\varphi} \end{pmatrix},$$
where \(r=A/(\lambda+\zeta)\), \(\zeta=\sqrt{\lambda^2-A^2}\), \(\det\Phi_0=1\),
$$\varphi_0(x, t)=-i\lambda x+\frac{i}{2}(\lambda^2+\zeta^2)t,\qquad \varphi(x, t)=-i\zeta x+i\lambda\zeta t.$$
The matrices \(U\) and \(V\) satisfy the reduction
$$U(\lambda)=-JU^\dagger(\lambda^*)J,\qquad V(\lambda)=-JV^\dagger(\lambda^*)J,$$
where \(J\) is a \(3 \times 3\) analogue of \(\sigma_3\): \(J\equiv\operatorname{diag}(1,-1,-1)\). We set \(\varphi_0^*(\lambda^*)=-\varphi_0(\lambda)\) and \(\varphi^*(\lambda^*)=-\varphi(\lambda)\). Then
$$\Phi^{-1}(\lambda)=[J\Phi(\lambda^*)J]^\dagger.$$

The “dressing” function \(\chi=\Phi\Phi_0^{-1}\) satisfies the asymptotic conditions

$$\chi(\lambda)=E+\frac{R}{\lambda}+O\biggl(\frac{1}{\lambda^2}\biggr),\qquad |\lambda|\to\infty,$$
and the reduction
$$\chi^{-1}(\lambda)=[J\chi(\lambda^*)J]^\dagger.$$

We choose the one-pole solution in the form

$$\chi(\lambda)=E+\frac{R}{\lambda-\lambda_1},$$
where \(E\) is the unit matrix. Then, similarly to the scalar case, we obtain
$$R=\begin{pmatrix} p_1q_1 &-p_1q_2 &-p_1q_3 \\ p_2q_1 &-p_2q_2 &-p_2q_3 \\ p_3q_1 &-p_3q_2 &-p_3q_3 \end{pmatrix},$$
where
$$\mathbf p=\frac{\mathbf q^*(\lambda_1-\lambda_1^*)}{|q_1|^2-|q_2|^2-|q_3|^2},\qquad \mathbf q=\Phi_0^*(x,t,\lambda_1^*)\mathbf c,\qquad \det\chi(\lambda)=\frac{\lambda-\lambda_1^*}{\lambda-\lambda_1},$$
and \(\mathbf C\) is an arbitrary complex constant vector. Here, we redefine the vector \(\mathbf q\) by eliminating the scalar factor \([(1-r^2)e^{-\varphi_0}]^{-1/3}\) from its components.

As a result, the solution \(\psi_{1,2}(x,t)\) becomes

$$\begin{aligned} \, &\psi_j(x,t)=A_j-2ip_1q_{j+1} =A_j-\frac{2iq_1^*q_{j+1}(\lambda_1-\lambda_1^*)}{|q_1|^2-|q_2|^2-|q_3|^2},\qquad j=1,2; \\ &q_1=e^{-\varphi}C_1+ir^*e^\varphi C_2,\qquad q_2=-\frac{A_2}{A}e^{\varphi_0}C_0 -\frac{A_1}{A}ir^*e^{-\varphi}C_1+\frac{A_1}{A}e^\varphi C_2, \\ &q_3=\frac{A_1}{A}e^{\varphi_0}C_0 -\frac{A_2}{A}ir^*e^{-\varphi}C_1+\frac{A_2}{A}e^\varphi C_2, \end{aligned}$$
(A.2)
where \(C_0\), \(C_1\), and \(C_2\) are arbitrary complex constants, \(\varphi\equiv u+iv\), and \(\varphi_0\equiv u_0+iv_0\).

We use the parameterization

$$\lambda_1=A\cosh(\xi+i\alpha),\qquad \lambda_1-\lambda_1^*=2iA\sin\alpha\sinh\xi,\qquad \zeta=A\sinh(\xi+i\alpha),\qquad r=e^{-\xi-i\alpha},$$
\(\xi>0\), \(0\le\alpha\le\pi\), and study the structure of solution (A.2), assuming that one of the integration constant is zero. From (A.2) with \(C_0=0\), we then obtain a generalization of soliton [27]—a singular solution of the scalar defocusing NLSE, multiplied by the vector \((A_1,A_2)/A\). The denominator of this solution vanishes at some point of the \((x,t)\) plane, and the solution itself has a simple pole at this point. Similar excitations were studied in [28]

At \(C_1=0\), the denominator in (A.2) is sign-definite:

$$|q_1|^2-|q_2|^2-|q_3|^2=-e^{-\xi+2u}[2|C_2|^2\sinh\xi+|C_0|^2e^{2(u_0-u)+\xi}]<0,$$
In this case, we obtain a soliton of the vector defocusing NLSE [15]. At \(C_2=0\), the denominator
$$|q_1|^2-|q_2|^2-|q_3|^2=-e^{-\xi-2u}[-2|C_1|^2\sinh\xi+|C_0|^2e^{2(u_0+u)+\xi}]$$
is not sign-definite. The corresponding solution represents a “singular analogue” of the soliton of the vector defocusing NLSE.

Thus, proceeding by analogy with the case of the vector focusing NLSE, we conclude that at arbitrary integration constants, solution (A.2) describes the fusion of a soliton with a singular excitation into a new singular excitation or, conversely, the decay of a singular solution into another singular solution and a soliton. It can be verified directly that both processes are resonance ones. That is, the frequencies and the wave numbers 1, 2, and 3 of solution (A.2) satisfy the resonance condition

$$\omega_3=\omega_1+\omega_2,\qquad p_3=p_1+p_2.$$
The corresponding values
$$\begin{alignedat}{2} &p_1=2A\sinh\xi\cos\alpha,&\qquad &\omega_1=A^2\sinh(2\xi)\cos(2\alpha), \\ &p_2=Ae^{-\xi}\cos\alpha,&\qquad &\omega_2=A^2\frac{e^{-2\xi}}{2}\cos(2\alpha), \\ &p_3=Ae^\xi\cos\alpha, &\qquad &\omega_3=A^2\frac{e^{2\xi}}{2}\cos(2\alpha) \end{alignedat}$$
can be found from the expressions
$$2v=-p_1x+\omega_1t,\qquad v_0-v=-p_2x+\omega_2t, \qquad v_0+v=-p_3x+\omega_3t.$$
We thus arrive at the resonance interaction of the solutions of model (A.1) in a class of nonintegrable functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raskovalov, A.A., Gelash, A.A. Resonance interaction of breathers in the Manakov system. Theor Math Phys 213, 1669–1685 (2022). https://doi.org/10.1134/S0040577922120029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922120029

Keywords

Navigation