Skip to main content
Log in

Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study bound states in an s-wave superconducting strip on the surface of a topological superconductor with the perpendicular Zeeman field. We prove analytically that an arbitrarily small local perturbation of the Zeeman field generates Andreev bound states with energies near the superconducting gap edges, while the (nonmagnetic) impurity potential does not produce such an effect. Rather large perturbations of the Zeeman field can lead to the appearance of Andreev bound states with energies near zero. We analytically find wave functions of the Andreev bound states under consideration. In contrast to the one-dimensional case, the wave functions do not satisfy the conjugation conditions that are characteristic of Majorana states because of the influence of neighboring subbands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys., 75, 076501, 36 pp. (2012).

    Article  ADS  Google Scholar 

  2. F. von Oppen, Y. Peng, and F. Pientka, “Topological superconducting phases in one dimension,” in: Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School (École de Physique des Houches, Session CIII, 4–29 August, 2014 C. Chamon, M. O. Goerbig, R. Moessner, and L. F. Cugliandolo, eds.), Oxford Univ. Press, Oxford (2017), pp. 389–449.

    Google Scholar 

  3. M. Sato and S. Fujimoto, “Majorana fermions and topology in superconductors,” J. Phys. Soc. Japan, 85, 072001, 32 pp. (2016).

    Article  ADS  Google Scholar 

  4. C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks,” Phys. Rev. B, 96, 075161, 29 pp. (2017).

    Article  ADS  Google Scholar 

  5. T. D. Stanescu and S. Tewari, “Robust low-energy Andreev bound states in semiconductor- superconductor structures: Importance of partial separation of component Majorana bound states,” Phys. Rev. B, 100, 155429, 21 pp. (2019); arXiv: 1811.02557.

    Article  ADS  Google Scholar 

  6. C. Moore, C. Zeng, T. D. Stanescu, and S. Tewari, “Quantized zero bias conductance plateau in semiconductor-superconductor heterostructures without non-Abelian Majorana zero modes,” Phys. Rev. B, 98, 155314, 6 pp. (2018); arXiv: 1804.03164.

    Article  ADS  Google Scholar 

  7. J. Cayao and A. M. Black-Schaffer, “Distinguishing trivial and topological zero-energy states in long nanowire junctions,” Phys. Rev. B, 104, L020501, 6 pp. (2021).

    Article  ADS  Google Scholar 

  8. B. D. Woods, S. Das Sarma, and T. D. Stanescu, “Subband occupation in semiconductor- superconductor nanowires,” Phys. Rev. B, 101, 045405, 13 pp. (2020); arXiv: 1910.04362.

    Article  ADS  Google Scholar 

  9. Yu. P. Chuburin and T. S. Tinyukova, “The emergence of bound states in a superconducting gap at the topological insulator edge,” Phys. Lett. A, 384, 126694, 7 pp. (2020).

    Article  MathSciNet  Google Scholar 

  10. B. D. Woods, J. Chen, S. M. Frolov, and T. D. Stanescu, “Zero-energy pinning of topologically trivial bound states in multiband semiconductor-superconductor nanowires,” Phys. Rev. B, 100, 125407, 17 pp. (2019); arXiv: 1902.02772.

    Article  ADS  Google Scholar 

  11. Z. Hou and J. Klinovaja, “Zero-energy Andreev bound states in iron-based superconductor Fe(Te,Se),” arXiv: 2109.08200.

  12. Yu. P. Chuburin and T. S. Tinyukova, “Interaction between subbands in a quasi-one-dimensional superconductor,” Theoret. and Math. Phys., 210, 398–410 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  13. T. D. Stanescu, J. D. Sau, R. M. Lutchyn, and S. Das Sarma, “Proximity effect at the superconductor-topological insulator interface,” Phys. Rev. B, 81, 241310, 4 pp. (2010); arXiv: 1002.0842.

    Article  ADS  Google Scholar 

  14. J. Linder, Yu. Tanaka, T. Yokoyama, A. Sudbo, and N. Nagaosa, “Interplay between superconductivity and ferromagnetism on a topological insulator,” Phys. Rev. B, 81, 184525, 11 pp. (2010).

    Article  ADS  Google Scholar 

  15. C. T. Olund and E. Zhao, “Current-phase relation for Josephson effect through helical metal,” Phys. Rev. B, 86, 214515, 7 pp. (2012).

    Article  ADS  Google Scholar 

  16. F. Crepin, B. Trauzettel, and F. Dolcini, “Signatures of Majorana bound states in transport properties of hybrid structures based on helical liquids,” Phys. Rev. B, 89, 205115, 12 pp. (2014).

    Article  ADS  Google Scholar 

  17. A. C. Potter and P. A. Lee, “Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films,” Phys. Rev. Lett., 105, 227003, 4 pp. (2010); arXiv: 1007.4569.

    Article  ADS  Google Scholar 

  18. J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Wiley, New York (1972).

    Google Scholar 

  19. P. Szumniak, D. Chevallier, D. Loss, and J. Klinovaja, “Spin and charge signatures of topological superconductivity in Rashba nanowires,” Phys. Rev. B, 96, 041401, 5 pp. (2017).

    Article  ADS  Google Scholar 

  20. M. Serina, D. Loss, and J. Klinovaja, “Boundary spin polarization as a robust signature of a topological phase transition in Majorana nanowires,” Phys. Rev. B, 98, 035419, 10 pp. (2018).

    Article  ADS  Google Scholar 

  21. Yu. P. Chuburin and T. S. Tinyukova, “Behaviour of Andreev states for topological phase transition,” Theoret. and Math. Phys., 208, 977–992 (2021).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

Chuburin’s work was supported by the financial program AAAA-A16-116021010082-8. Tinyukova’s work was funded by the Ministry of Science and Higher Education of the Russian Federation in the framework of state assignment No. 075-01265-22-00, project FEWS-2020-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Chuburin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 212, pp. 414–428 https://doi.org/10.4213/tmf10297.

Appendix

To find the Green’s function of the Hamiltonian \(H^{(n)}\), we find the function \(\Psi\) from the equation \((H^{(n)}-E)\Psi=\Phi\). We rewrite this equation in the form

$$\begin{aligned} \, &\begin{pmatrix} M-E & -i\partial_x+2\pi in/W & 0 & \Delta\\ -i\partial_x-2\pi in/W & -M-E & -\Delta & 0\\ 0 & -\Delta & -M-E & -i\partial_x-2\pi in/W \\ \Delta & 0 & -i\partial_x+2\pi in/W & M-E \end{pmatrix} \times{} \\ &\qquad\times \begin{pmatrix} \psi _{\mathrm{e}\uparrow}^{(n)}(x)\\[1mm] \psi _{\mathrm{e}\downarrow}^{(n)}(x)\\[1mm] \psi _{\mathrm{h}\uparrow}^{(n)}(x) \\[1mm] \psi _{\mathrm{h}\downarrow}^{(n)}(x) \end{pmatrix}= \begin{pmatrix} \varphi_{\mathrm{e}\uparrow}^{(n)}(x)\\[1mm] \varphi_{\mathrm{e}\downarrow}^{(n)}(x)\\[1mm] \varphi_{\mathrm{h}\uparrow}^{(n)}(x) \\[1mm] \varphi_{\mathrm{h}\downarrow}^{(n)}(x) \end{pmatrix} \end{aligned}$$
or, after the Fourier transformation,
$$\begin{aligned} \, &\widetilde{\varphi}(p)=F\varphi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-ipx}\varphi(x)\,dx, \nonumber \\ &\begin{pmatrix} M-E & p+2\pi in/W & 0 & \Delta\\[1mm] p-2\pi in/W & -M-E & -\Delta & 0\\[1mm] 0 & -\Delta & -M-E & p-2\pi in/W \\[1mm] \Delta & 0 & p+2\pi in/W & M-E \end{pmatrix} \begin{pmatrix} \widetilde{\psi} _{\mathrm{e}\uparrow}^{(n)}(p)\\[1mm] \widetilde{\psi} _{\mathrm{e}\downarrow}^{(n)}(p)\\[1mm] \widetilde{\psi} _{\mathrm{h}\uparrow}^{(n)}(p) \\[1mm] \widetilde{\psi} _{\mathrm{h}\downarrow}^{(n)}(p) \end{pmatrix} ={} \nonumber \\ &\qquad=(\widetilde{\varphi}_{\mathrm{e}\uparrow}^{(n)}(p), \widetilde{\varphi}_{\mathrm{e}\downarrow}^{(n)}(p), \widetilde{\varphi}_{\mathrm{h}\uparrow}^{(n)}(p), \widetilde{\varphi}_{\mathrm{h}\downarrow}^{(n)}(p))^{\mathrm T}. \end{aligned}$$
(A.1)
The determinant of the matrix in (A.1) is
$$\begin{aligned} \, d={}&\biggl(p^2+\biggl(\frac{2\pi n}{W}\biggr)^2\biggr)^2 +2\biggl(p^2+\biggl(\frac{2\pi n}{W}\biggr)^2\biggr)(M^2+\Delta ^2-E^2)+{} \nonumber \\ &+(M^2-E^2)^2-2\Delta ^2(M^2+E^2)+\Delta ^4. \end{aligned}$$
(A.2)
From (A.2), we find the dispersion law for the \(n\)th subband
$$ E^2=(M\pm \Delta)^2+p^2+\biggl(\frac{2\pi n}{W}\biggr)^2$$
(A.3)
and the equality
$$\begin{aligned} \, \frac{1}{d}=&-\frac{1}{4M\Delta}\biggl( \frac{1}{p^2+(2\pi n/W)^2+(M+\Delta)^2-E^2}-{} \nonumber \\ &-\frac{1}{p^2+(2\pi n/W)^2+(M-\Delta)^2-E^2}\biggr). \end{aligned}$$
(A.4)
Using Cramer’s rule and neglecting quantities of the order of smallness of \((M-\Delta)^2\), we obtain the Green’s function of the Hamiltonian \(H^{(n)}\) in momentum representation,
$$\begin{aligned} \, \widetilde{G}^{(n)}(p,p',E)={}&\frac{\delta(p-p')}{2}\biggl(\frac {1}{p^2-a_n^2}-\frac{1}{p^2-b_n^2}\biggr)\times{} \nonumber \\ &\times \begin{pmatrix} M-\Delta+E & p+2\pi i n/W & -(p+2\pi i n/W) & -(M-\Delta+E)\\ p-2\pi i n/W & -(M-\Delta-E) & M-\Delta-E & -(p-2\pi i n/W)\\ -(p-2\pi i n/W) & M-\Delta-E & -(M-\Delta-E) & p-2\pi i n/W\\ -(M-\Delta+E) & -(p+2\pi i n/W) & p+2\pi i n/W & M-\Delta+E\\ \end{pmatrix}, \end{aligned}$$
(A.5)
where \(a_n^2=E^2-(2\pi n/W)^2-(M-\Delta)^2\) and \(b_n^2=E^2-(2\pi n/W)^2-(M+\Delta)^2\). To pass to the coordinate representation, we use the known formulas
$$ \begin{aligned} \, &\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \frac{e^{ipx}\widetilde{\varphi}(p)\,dp}{p^2-a^2}= -\frac{1}{2ia}\int_{-\infty}^{\infty} e^{ia|x-x'|}\varphi(x')\,dx', \\[1mm] &\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \frac{p e^{ipx}\widetilde{\varphi}(p)\,dp}{p^2-a^2}= -\frac{1}{2i}\int_{-\infty}^{\infty} e^{ia|x-x'|}\operatorname{sgn}(x-x')\varphi(x')\,dx', \end{aligned}$$
(A.6)
assuming that \(a=a_n\) or \(b_n\).

To find the Green’s function in the coordinate representation using formulas (A.6), we integrate equalities (A.5) over \(p\). Because of the conditions for the quantities \(1/W\) and \(|M-\Delta |\) (see Sec. 2), when integrating over the region where the \(p\) are small, the denominator of the second term in the factor before the matrix in (A.5) is much larger than that of the first term, and the integrals over the region where \(p\) are rather large are small. Thus, the second term in (A.5) can be neglected. Although the remaining integrals are taken over the entire number line, the smallness of their denominators for small \(p\) under the adopted conditions for the parameters makes these integrals mainly saturated by small \(p\), and the condition for the smallness of the momenta \(p\) (see the assumptions after (11)) is satisfied. This reasoning is easily confirmed by numerical estimations.

Based on the foregoing, we use (A.5) and (A.6) to obtain the Green’s function of the Hamiltonian \(H^{(n)}\) in the coordinate representation:

$$\begin{aligned} \, &{G}^{(n)}(x-x',E)=-\frac{e^{ia_n|x-x'|}}{4ia_n} \begin{pmatrix} M-\Delta+E & b_n^+ & -b_n^+ & -(M-\Delta+E)\\ b_n^- & -(M-\Delta-E) & M-\Delta-E & -b_n^-\\ -b_n^- & M-\Delta-E & -(M-\Delta-E) & b_n^-\\ -(M-\Delta+E) & -b_n^+ & b_n^+ & M-\Delta+E\\ \end{pmatrix}, \end{aligned}$$
(A.7)
where \(b_n^\pm=a_n \operatorname{sgn}(x-x')\pm 2\pi i n/W\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuburin, Y.P., Tinyukova, T.S. Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator. Theor Math Phys 212, 1246–1258 (2022). https://doi.org/10.1134/S0040577922090070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922090070

Keywords

Navigation