Skip to main content
Log in

Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct approximate analytic solutions of the Logunov–Tavkhelidze equation in the case of a potential that, in the one-dimensional relativistic configuration representation, has the form analogous to the potential of the nonrelativistic harmonic oscillator in the coordinate representation. The wave functions are obtained in both the momentum and relativistic configuration representations. The approximate values of the energy of the relativistic harmonic oscillator are the roots of transcendental equations. The wave functions in the relativistic configuration representation have additional zeros in comparison with the wave functions of the corresponding states of the nonrelativistic harmonic oscillator in the coordinate representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. A. Logunov and A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory,” Nuovo Cimento, 29, 380–399 (1963).

    Article  MathSciNet  Google Scholar 

  2. V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude,” Nucl. Phys. B, 6, 125–148 (1968).

    Article  ADS  Google Scholar 

  3. V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, “Three-dimensional formulation of the relativistic two-body problem,” in: Particles and Nuclei (N. N. Bogolyubov, A. M. Baldin, N. Van Hieu, and V. G. Solov’ev), Springer, Boston (1973), pp. 69–109.

    Google Scholar 

  4. V. N. Kapshai and N. B. Skachkov, “Exact solution of covariant two-particle one-time equation with superposition of one-boson exchange quasipotentials,” Theoret. and Math. Phys., 53, 963–970 (1982).

    Article  ADS  Google Scholar 

  5. V. N. Kapshai and T. A. Alferova, “Analog of the Frobenius method for solving homogeneous integral equations of the quasi-potential approach in a relativistic configurational representation,” Russ. Phys. J., 40, 641–648 (1997).

    Article  Google Scholar 

  6. V. N. Kapshai and T. A. Alferova, “Relativistic two-particle one-dimensional scattering problem for superposition of \(\delta\)-potentials,” J. Phys. A: Math. Gen., 32, 5329–5342 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. N. Kapshai and T. A. Alferova, “One-dimensional relativistic problems on bound states and scattering for a superposition of two \(\delta\) potentials,” Russ. Phys. J., 45, 1–9 (2002).

    Article  Google Scholar 

  8. V. N. Kapshai and Yu. A. Grishechkin, “Relativistic equations with some point potentials,” Russ. Phys. J., 52, 554–563 (2009).

    Article  MathSciNet  Google Scholar 

  9. V. N. Kapshai and Yu. A. Hryshechkin, “The relativistic equations with a nonlinear delta-potential,” Nonlinear Phenom. Complex Syst., 12, 75–80 (2009).

    MATH  Google Scholar 

  10. V. N. Kapshai and Yu. A. Grishechkin, “Relativistic scattering \(s\)-states problem for superposition of two potentials <\(\delta\)-sphere> type,” PFMT, 7–12 (2015).

    MATH  Google Scholar 

  11. V. N. Kapshai and N. B. Skachkov, “Exact solutions of quasipotential equations for the Coulomb potential and a linear confining potential,” Theoret. and Math. Phys., 55, 471–477 (1983).

    Article  ADS  Google Scholar 

  12. E. E. Boos, V. I. Savrin, and E. M. Shablygin, “Exact solution of a quasipotential equation by contour integration,” Theoret. and Math. Phys., 72, 819–824 (1987).

    Article  ADS  Google Scholar 

  13. V. N. Kapshai, S. P. Kuleshov, and N. B. Skachkov, “On a class of exact solutions of quasipotential equations,” Theoret. and Math. Phys., 55, 545–553 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. N. Kapshai, “Integral equations of relativistic bound state theory and Sturm–Liouville problem,” in: Operator Methods in Ordinary and Partial Differential Equations (S. Kovalevsky Symposium, University of Stockholm, Stockholm, June 2000, Operator Theory: Advances and Applications, Vol. 132, S. Albeverio, N. Elander, W. Norrie Everitt, and P. Kurasov, eds.), Birkhäuser, Basel (2002), pp. 199–206.

    Chapter  Google Scholar 

  15. V. N. Kapshai and S. I. Fialka, “Solution of relativistic two-particle equations with arbitrary orbital angular momentum,” Russ. Phys. J., 60, 37–49 (2017).

    Article  Google Scholar 

  16. E. A. Dei, V. N. Kapshai, and N. B. Skachkov, “Exact solution of quasipotential equations of general form with chromodynamic interaction,” Theoret. and Math. Phys., 69, 997–1006 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  17. N. M. Atakishiyev, R. M. Mir-Kassimov, and Sh. M. Nagiyev, “Quasipotential models of a relativistic oscillator,” Theoret. and Math. Phys., 44, 592–603 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  18. N. M. Atakishiyev, R. M. Mir-Kasimov, and Sh. M. Nagiyev, “A relativistic model of the isotropic oscillator,” Ann. Phys., 42, 25–30 (1985).

    Article  MathSciNet  Google Scholar 

  19. Sh. M. Nagiyev, E. I. Jafarov, and R. M. Imanov, “The relativistic linear singular oscillator,” J. Phys. A: Math. Gen., 36, 7813–7824 (2003); arXiv: math-ph/0302042.

    Article  ADS  MathSciNet  Google Scholar 

  20. S. M. Nagiyev, E. I. Jafarov, R. M. Imanov, and L. Homorodean, “A relativistic model of the isotropic three-dimensional singular oscillator,” Phys. Lett. A, 334, 260–266 (2005); arXiv: math-ph/0411054.

    Article  ADS  Google Scholar 

  21. R. A. Frick, “Model of a relativistic oscillator in a generalized Schrödinger picture,” Ann. Phys., 523, 871–882 (2011).

    Article  MathSciNet  Google Scholar 

  22. Sh. M. Nagiyev and A. I. Ahmadov, “Exact solution of the relativistic finite-difference equation for the Coulomb plus a ring-shaped-like potential,” Internat. J. Modern Phys. A, 34, 1950089, 17 pp. (2019).

    Article  ADS  MathSciNet  Google Scholar 

  23. Sh. M. Nagiyev and R. M. Mir-Kassimov, “Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group,” Theoret. and Math. Phys., 208, 1265–1276 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  24. E. E. Boos, V. I. Savrin, and S. A. Shichanin, “On the spectrum of a relativistic bound system in a quasipotential well with barrier,” Theoret. and Math. Phys., 77, 1176–1180 (1988).

    Article  ADS  Google Scholar 

  25. A. O. Gel’fond, Calculus of Finite Differences, Hindustan Publishing, Delhi (1971).

    MATH  Google Scholar 

  26. V. Sh. Gogokhiya, “Reduction of quasipotential equations to Sturm–Liouville problems and the comparison equation method,” Theoret. and Math. Phys., 48, 617–623 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  27. V. I. Savrin and E. M. Shablygin, “Approximate analytic solution of a quasipotential equation,” Theoret. and Math. Phys., 75, 478–482 (1988).

    Article  ADS  Google Scholar 

  28. A. A. Atanasov and A. T. Marinov, “\(\hbar\)-expansion for bound states described by the relativistic three-dimensional two-particle quasi-potential equation,” Theoret. and Math. Phys., 129, 1400–1407 (2001).

    Article  Google Scholar 

  29. Yu. A. Grishechkin and V. N. Kapshai, “Solution of the Logunov–Tavkhelidze equation for the three-dimensional oscillator potential in the relativistic configuration representation,” Russ. Phys. J., 61, 1645–1652 (2019).

    Article  Google Scholar 

  30. G. Palma and U. Raff, “The one-dimensional hydrogen atom revisited,” Canadian J. Phys., 84, 787–800 (2006); arXiv: quant-ph/0608038.

    Article  ADS  Google Scholar 

  31. N. W. McLachlan, Theory and Application of Mathieu Functions, Clarendon Press, Oxford (1947).

    MATH  Google Scholar 

  32. A. Messiah, Quantum Mechanics, Vol. 1, North-Holland, Amsterdam (1961).

    MATH  Google Scholar 

  33. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York–Toronto–London (1953).

    MATH  Google Scholar 

  34. G. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1: The Hypergeometric Function. Legendre Functions, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  35. Yu. A. Grishechkin and V. N. Kapshai, “Numerical solution of relativistic problems on bound states of systems of two spinless particles,” Russ. Phys. J., 56, 435–443 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Grishechkin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 211, pp. 455–468 https://doi.org/10.4213/tmf10281.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishechkin, Y.A., Kapshai, V.N. Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation. Theor Math Phys 211, 826–837 (2022). https://doi.org/10.1134/S0040577922060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922060058

Keywords

Navigation