Skip to main content
Log in

Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

An exactly solvable relativistic model of a linear oscillator is considered in detail in the presence of a constant external force in both the momentum representation and the relativistic configuration representation. It is found that in contrast to the nonrelativistic case, depending on the magnitude of the force, both discrete and continuous energy spectra are possible. It is shown that in the case of a discrete spectrum, the wave functions in the momentum representation are expressed in terms of the Laguerre polynomials, and in the relativistic configuration representation, in terms of the Meixner–Pollaczek polynomials. Integral and differential–difference formulas are found connecting the Laguerre and Meixner–Pollaczek polynomials. A dynamical symmetry group is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Nonrelativistic Theory (1973).

    Google Scholar 

  2. A. I. Baz, Ya. B. Zeldovich, and A. M. Perelomov, Scattering, Reactions and Decay in Non-relativistic Quantum Mechanics, Nauka, Moscow (1971).

    Google Scholar 

  3. M. Moshinsky and Yu. F. Smirnov, The Harmonic Oscillator in Modern Physics (Contemporary Concepts in Physics, Vol. 9), Harwood Academic Publ., Amsterdam (1996).

    MATH  Google Scholar 

  4. H. Yukawa, “Structure and mass spectrum of elementary particles. II. Oscillator model,” Phys. Rev., 91, 416–417 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Markov, “On dynamically deformable form factors in the theory of elementary particles,” Nuovo Cimento, 3, 760–772 (1956).

    Article  MathSciNet  Google Scholar 

  6. R. P. Feynman, M. Kislinger, and F. Ravndal, “Current matrix elements from a relativistic quark model,” Phys. Rev. D, 3, 2706–2732 (1971).

    Article  ADS  Google Scholar 

  7. V. L. Ginzburg and V. I. Man’ko, “Relativistic wave equations with internal degrees of freedom, and partons,” Sov. J. Part. Nucl., 7, 3–20 (1976).

    MathSciNet  Google Scholar 

  8. P. N. Bogoljubov, “Equations for bound states (quarks),” Sov. J. Part. Nucl., 3, 144–174 (1972).

    MathSciNet  Google Scholar 

  9. T. De, Y. S. Kim, and M. E. Noz, “Radial effects in the symmetric quark model,” Nuovo Cimento A, 13, 1089–1101 (1973).

    Article  ADS  Google Scholar 

  10. Y. S. Kim and M. E. Noz, “Group theory of covariant harmonic oscillators,” Am. J. Phys., 46, 480–483 (1978).

    Article  ADS  Google Scholar 

  11. Y. S. Kim and M. E. Noz, “Relativistic harmonic oscillators and hadronic structure in the quantum-mechanics curriculum,” Am. J. Phys., 46, 484–488 (1978).

    Article  ADS  Google Scholar 

  12. I. Bars, “Relativistic harmonic oscillator revisited,” Phys. Rev. D, 79, 045009, 22 pp. (2009); arXiv: 0810.2075.

    Article  ADS  MathSciNet  Google Scholar 

  13. D. J. Navarro and J. Navarro-Salas, “Special-relativistic harmoic oscilator modeled by Klein–Gordon theory in anti-de Sitter space,” J. Math. Phys., 37, 6060–6073 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. I. I. Cotaescu, “Geometric models of the relativistic harmonic oscillator,” Internat. J. Modern Phys. A, 12, 3545–3550 (1997); arXiv: physics/9704009.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Moshinsky and A. Szczepaniak, “The Dirac oscillator,” J. Phys. A: Math. Gen., 22, L817–L819 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  16. O. L. de Lange, “Shift operators for a Dirac oscillator,” J. Math. Phys., 32, 1296–1300 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. Moreno and A. Zentella, “Covariance, CPT and the Foldy–Wouthuysen transformation for the Dirac oscillator,” J. Phys. A: Math. Gen., 22, L8221–L825 (1989).

    Article  MathSciNet  Google Scholar 

  18. R. Lisboa, M. Malheiro, A. S. de Castro, P. Alberto, and M. Fiolhais, “Pseudospin symmetry and the relativistic harmonic oscillator,” Phys. Rev. C, 69, 024319, 15 pp. (2004); arXiv: nucl-th/0310071.

    Article  ADS  MATH  Google Scholar 

  19. M. Moshinsky, G. Loyola, A. Szczepaniak, C. Villegas, and N. Aquino, “The Dirac oscillator and its contribution to the baryon mass formula,” in: Proceedings of the Rio De Janeiro International Workshop on Relativistic Aspects of Nuclear Physics (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brasil, August 28–30, 1989, T. Kodama, K. C. Chung S. J. B. Duarte, and M. C. Nemes, eds.), World Sci., Singapore (1990), pp. 271–308.

    Google Scholar 

  20. R. P. Martinez-y-Romero, H. N. Núñez Yépez, and A. L. Salas-Brito, “Relativistic quantum mechanics of a Dirac oscillator,” Eur. J. Phys., 16, 135–141 (1995); arXiv: quant-ph/9908069.

    Article  MathSciNet  Google Scholar 

  21. E. E. Salpeter, “Mass corrections to the fine structure of hydrogen-like atoms,” Phys. Rev., 87, 328–343 (1952).

    Article  ADS  MATH  Google Scholar 

  22. Z.-F. Li, J.-J. Liu, W. Lucha, W.-G. Ma, and F. F. Schöberl, “Relativistic harmonic oscillator,” J. Math. Phys., 46, 103514, 11 pp. (2005); arXiv: hep-ph/0501268.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. K. Kowalski and J. Rembieliński, “Relativistic massless harmonic oscillator,” Phys. Rev. A, 81, 012118, 6 pp. (2010); arXiv: 1002.0474.

    Article  ADS  Google Scholar 

  24. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, “Quasi-potential approach and the expansion in relativistic spherical functions,” Nuovo Cimento A, 55, 233–257 (1968).

    Article  ADS  Google Scholar 

  25. V. G. Kadyshevskii, R. M. Mir-Kasimov, and N. B. Skachkov, “Three-dimensional formulation of the relativistic two-body problem,” Part. Nucl., 2, 635–690 (1972).

    Google Scholar 

  26. A. D. Donkov, V. G. Kadyshevskii, M. D. Matveev, and R. M. Mir-Kassimov, “Quasipotential equation for a relativistic harmonic oscillator,” Theoret. and Math. Phys., 8, 673–681 (1971).

    Article  ADS  Google Scholar 

  27. N. M. Atakishiyev, R. M. Mir-Kassimov, and Sh. M. Nagiyev, “Quasipotential models of a relativistic oscillator,” Theoret. and Math. Phys., 44, 592–603 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  28. N. M. Atakishiyev, “Quasipotential wave functions of a relativistic harmonic oscillator and Pollaczek polynomials,” Theoret. and Math. Phys., 58, 166–171 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  29. N. M. Atakishiyev, R. M. Mir-Kasimov, and Sh. M. Nagiyev, “A relativistic model of the isotropic oscillator,” Ann. Phys., 497, 25–30 (1985).

    Article  MathSciNet  Google Scholar 

  30. R. M. Mir-Kasimov, Sh. M. Nagiev, and E. Dzh. Kagramanov, Relyativistskiy lineynyy ostsillyator pod deystviem postoyannoy vneshney sily i bilineynaya proizvodyashchaya funktsiya dlya polinomov Pollacheka, Preprint No. 214 [in Russian], SKB IFAN AzSSR, Baku (1987).

  31. E. D. Kagramanov, R. M. Mir-Kasimov, and Sh. M. Nagiyev, “The covariant linear oscillator and generalized realization of the dynamical \(\mathrm{SU}(1,1)\) symmetry algebra,” J. Math. Phys., 31, 1733–1738 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. R. M. Mir-Kasimov, “\(\mathrm{SU}_q(1,1)\) and the ralitivistic oscillator,” J. Phys. A: Math. Gen., 24, 4283–4302 (1991).

    Article  ADS  MATH  Google Scholar 

  33. Yu. A. Grishechkin and V. N. Kapshai, “Solution of the Logunov–Tavkhelidze equation for the three-dimensional oscillator potential in the relativistic configuration representation,” Russ. Phys. J., 61, 1645–1652 (2019).

    Article  MATH  Google Scholar 

  34. N. M. Atakishiyev and K. B. Wolf, “Generalized coherent states for a relativistic model of the linear oscillator in a homogeneous external field,” Rep. Math. Phys., 27, 305–311 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. N. M. Atakishiyev, Sh. M. Nagiyev, and K. B. Wolf, “Wigner distribution functions for a relativistic linear oscillator,” Theoret. and Math. Phys., 114, 322–334 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S. M. Nagiyev, G. H. Guliyeva, and E. I. Jafarov, “The Wigner function of the relativistic finite-difference oscillator in an external field,” J. Phys. A: Math. Theor., 42, 454015, 10 pp. (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. N. M. Atakishiyev, Sh. M. Nagiyev, and K. B. Wolf, “Realization of \(\mathrm{Sp}(2,r)\) by finite-difference operators: the relativistic oscillator in an external field,” J. Group Theory Phys., 3, 61–70 (1995).

    MathSciNet  Google Scholar 

  38. E. A. Dei, V. N. Kapshai, and N. B. Skachkov, “Exact solutions of a class of quasipotential equations for a superposition of one-boson exchange quasipotentials,” Theoret. and Math. Phys., 82, 130–138 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  39. A. A. Atanasov and E. S. Pisanova, “Perturbation theory for relativistic three-dimensional two-particle quasipotential equations,” Theoret. and Math. Phys., 89, 1169–1173 (1991).

    Article  ADS  Google Scholar 

  40. A. A. Atanasov and A. T. Marinov, “\(\hbar\)-expansion for bound states described by the relativistic three-dimensional two-particle quasi-potential equation,” Theoret. and Math. Phys., 129, 1400–1407 (2001).

    Article  MATH  Google Scholar 

  41. O. P. Solovtsova and Yu. D. Chernichenko, “The resummation \(L\)-factor in the relativistic quasipotential approach,” Theoret. and Math. Phys., 166, 194–209 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. E. D. Kagramanov, R. M. Mir-Kasimov, and Sh. M. Nagiyev, “Can we treat confinement as a pure relativistic effect?”, Phys. Lett. A, 140, 1–4 (1989).

    Article  ADS  Google Scholar 

  43. G. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1: The Hypergeometric Function. Legendre Functions, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  44. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York–Toronto–London (1953).

    MATH  Google Scholar 

  45. R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer, Berlin (2010).

    Book  MATH  Google Scholar 

  46. A. O. Barut, “Some unusual applications of Lie algebra representations in quantum theory,” SIAM J. Appl. Math., 25, 247–259 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  47. I. A. Malkin and V. I. Man’ko, Dynamic Symmetries and Coherent States of Quantum Systems, Nauka, Moscow (1979).

    Google Scholar 

  48. A. O. Barut and R. Raczka, Theory of Group Representations and Applications, Polish Sci. Publ. PWN, Warszawa (1986).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. N. Nagiyev.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 481–494 https://doi.org/10.4213/tmf10011.

Appendix

Here, we prove formula (29). We proceed from the recursion relations for the Meixner–Pollaczek and Hermite polynomials [39]

$$P_{n+1}^\nu(x;\varphi)= A_n P_n^\nu(x;\varphi) + B_n P_{n-1}^\nu(x;\varphi),$$
(A.1)
$$H_{n+1}(z)=2z H_n(z) - 2nH_{n-1}(z),$$
(A.2)
where
$$A_n=\frac{2[(n+\nu)\cos\varphi + x\sin\varphi]}{n+1},\qquad B_n=-\frac{n-1+2\nu}{n+1}, \qquad n = 0,1,2,3,\dots\,.$$
Let
$$ Q_n=n!\,\nu^{-n/2} P_n^\nu\biggl(x\sqrt{\nu};\arccos\frac{x_0}{\sqrt{ \nu}}\biggr),\qquad Q'_n=\lim_{\nu\to\infty}Q_n.$$
(A.3)
From (A.1), we then obtain the recursion relation for the polynomials \(Q_n\)
$$ Q_{n+1} = A'_n Q_n + B'_n Q_{n-1},$$
(A.4)
where \(A'_n = (n+1)A_n/\sqrt{\nu}\) and \(B'_n= n(n+1)B_n/\nu\). Because \(\lim_{\nu \to \infty}A'_n= 2(x+x_0)\) and \(\lim_{\nu \to \infty}B'_n= -2n\), passing to the limit \(\nu \to \infty\) in (A.4) yields the equality
$$ Q'_{n+1} = 2(x+x_0)Q'_n - 2nQ'_{n-1},$$
(A.5)
which coincides with recursion relation (A.2) for the Hermite polynomials for \(z=x+x_0\). Hence, \(Q'_n = H_n(x+x_0)\). This completes the proof.

Conflict of interests

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagiyev, S.N., Mir-Kasimov, R.M. Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group. Theor Math Phys 208, 1265–1276 (2021). https://doi.org/10.1134/S0040577921090087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921090087

Keywords

Navigation