Skip to main content
Log in

Interaction between subbands in a quasi-one-dimensional superconductor

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of the Bogoliubov–de Gennes equation, we study the spinless \(p\)-wave superconductor in an infinite strip in the presence of some impurity. We analytically determine the wave functions of stable bound states with energies close to edge points of the energy gap. We prove that for a small impurity potential, the contribution of the nearest subbands to the wave functions in the case of energy values close to edge points is very small, and these energy levels are significantly closer to the gap edge than in the one-dimensional case. We also study the bound states with nearly zero energy values; in contrast to the one-dimensional case, they do not have the “particle–hole” symmetry. In the cases under study, in addition to the bound states, there also exit resonance states related to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Progr. Phys., 75, 076501, 36 pp. (2012); arXiv: 1202.1293.

    Article  ADS  Google Scholar 

  2. F. von Oppen, Y. Peng, and F. Pientka, “Topological superconducting phases in one dimension,” in: Topological Aspects of Condensed Matter Physics (École de Physique des Houches, Session CIII, 4–29 August, 2014, Lecture Notes of the Les Houches Summer School, Vol. 103, C. Chamon, M. O. Goerbig, R. Moessner, and L. F. Cugliandolo, eds.), Oxford Univ. Press, Oxford (2017), pp. 387–447.

    Article  Google Scholar 

  3. M. Sato and S. Fujimoto, “Majorana fermions and topology in superconductors,” J. Phys. Soc. Japan, 85, 072001, 31 pp. (2016).

    Article  ADS  Google Scholar 

  4. J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, “Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems,” Phys. Rev. B, 82, 214509, 26 pp. (2010); arXiv: 1006.2829.

    Article  ADS  Google Scholar 

  5. Y. Oreg, G. Refael, and F. von Oppen, “Helical liquids and Majorana bound states in quantum wires,” Phys. Rev. Lett., 105, 177002 (2010).

    Article  ADS  Google Scholar 

  6. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, “Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices,” Science, 336, 1003–1007 (2012); arXiv: 1204.2792.

    Article  ADS  Google Scholar 

  7. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, “Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions,” Nature Phys., 8, 887–895 (2012); arXiv: 1205.7073.

    Article  ADS  Google Scholar 

  8. C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks,” Phys. Rev. B, 96, 075161, 29 pp. (2017); arXiv: 1705.02035.

    Article  ADS  Google Scholar 

  9. C. Moore, C. Zeng, T. D. Stanescu, and S. Tewari, “Quantized zero-bias conductance plateau in semiconductor-superconductor heterostructures without topological Majorana zero modes,” Phys. Rev. B, 98, 155314, 6 pp. (2018); arXiv: 1804.03164.

    Article  ADS  Google Scholar 

  10. D. B. Woods, S. Das Sarma, and T. D. Stanescu, “Subband occupation in semiconductor-superconductor nanowires,” Phys. Rev. B, 101, 045405, 13 pp. (2020); arXiv: 1910.04362.

    Article  ADS  Google Scholar 

  11. T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, “Majorana fermions in semiconductor nanowires, Majorana fermions in semiconductor nanowires,” Phys. Rev. B, 84, 144522, 29 pp. (2011); arXiv: 1106.3078.

    Article  ADS  Google Scholar 

  12. F. Pientka, G. Kells, A. Romito, P. W. Brouwer, and F. von Oppen, “Enhanced zero-bias Majorana peak in the differential tunneling conductance of disordered multisubband quantum-wire/superconductor junctions,” Phys. Rev. Lett., 109, 227006, 5 pp. (2012); arXiv: 1206.0723.

    Article  ADS  Google Scholar 

  13. B. D. Woods, J. Chen, S. M. Frolov, and T. D. Stanescu, “Zero-energy pinning of topologically trivial bound states in multiband semiconductor-superconductor nanowires,” Phys. Rev. B, 100, 125407, 17 pp. (2019); arXiv: 1902.02772.

    Article  ADS  Google Scholar 

  14. Z. Hou and J. Klinovaja, “Zero-energy Andreev bound states in iron-based superconductor Fe(Te,Se),” arXiv: 2109.08200.

  15. A. C. Potter and P. A. Lee, “Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films,” Phys. Rev. Lett., 105, 227003, 4 pp. (2010); arXiv: 1007.4569.

    Article  ADS  Google Scholar 

  16. Yu. P. Chuburin and T. S. Tinyukova, “Mutual transition of Andreev and Majorana bound states in a superconducting gap,” Theoret. and Math. Phys., 205, 1666–1681 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  17. Yu. P. Chuburin and T. S. Tinyukova, “Behaviour of Andreev states for topological phase transition,” Theoret. and Math. Phys., 208, 977–992 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Aguado, “Majorana quasiparticles in condensed matter,” Riv. Nuovo Cimento, 40, 523–593 (2017); arXiv: 1711.00011.

    Google Scholar 

  19. J. R. Taylor, Scattering Theory: The Quantum Theory on Nonrelativistic Collisions, John Wiley and Sons, New York (1972).

    Google Scholar 

  20. C. W. J. Beenakker, “Random-matrix theory of Majorana fermions and topological superconductors,” Rev. Modern Phys., 87, 1037–1066 (2015); arXiv: 1407.2131.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The work of Yu. P. Chuburin was supported by the financial program AAAA-A16-116021010082-8. This research was funded by the Ministry of Science and Higher Education of the Russian Federation in the framework of state assignment No. 075-01265-22-00 [1], project FEWS-2020-0010 [2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Chuburin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 455-469 https://doi.org/10.4213/tmf10197.

Appendix

To determine the Green’s function of the Hamiltonian \(H^{(n)}\), we solve the equation

$$ (H^{(n)}-E)\Psi^{(n)}=\Phi^{(n)}$$
(A.1)
for \(\Psi^{(n)}\). Using (1), we rewrite Eq. (A.1) as
$$ \begin{pmatrix} -\partial_x^2+\biggl(\dfrac{2\pi n}{l}\biggr)^2-\mu-E & \Delta\biggl(\dfrac{-\partial_x+2\pi n}{l}\biggr)\\ \Delta\biggl(\partial_x+\dfrac{2\pi n}{l}\biggr) & \partial_x^2-\biggl(\dfrac{2\pi n}{l}\biggr)^2+\mu-E \end{pmatrix} \begin{pmatrix} \psi_\mathrm{e}^{(n)}(x)\\ \psi_\mathrm{h}^{(n)}(x) \end{pmatrix}= \begin{pmatrix} \varphi_\mathrm{e}^{(n)}(x)\\ \varphi_\mathrm{h}^{(n)}(x) \end{pmatrix},$$
(A.2)
\(n=0,\pm 1,\dots\). After the Fourier transformation with respect to \(x\), Eq. (A.2) becomes
$$ \begin{pmatrix} p^2+\biggl(\dfrac{2\pi n}{l}\biggr)^2-\mu-E & \Delta\biggl(-ip+\dfrac{2\pi n}{l}\biggr)\\ \Delta\biggl(ip+\dfrac{2\pi n}{l}\biggr) & -p^2-\biggl(\dfrac{2\pi n}{l}\biggr)^2+\mu-E \end{pmatrix} \begin{pmatrix} \widetilde{\psi}_\mathrm{e}^{(n)}(p)\\ \widetilde{\psi}_\mathrm{h}^{(n)}(p) \end{pmatrix}= \begin{pmatrix} \widetilde{\varphi}_\mathrm{e}^{(n)}(p)\\ \widetilde{\varphi}_\mathrm{h}^{(n)}(p) \end{pmatrix},$$
(A.3)
\(n=0,\pm 1,\dots\). The determinant of matrix (A.3) is
$$ d_n=E^2-\biggl(p^2+\biggl(\frac{2\pi n}{l}\biggr)^{\!2}-\mu \biggr)^{\!2}-\Delta^2 \biggl(p^2+\biggl(\frac{2\pi n}{l} \biggr)^{\!2}\,\biggr).$$
(A.4)
By (A.4), the dispersion law \(d_n=0\) is
$$ \biggl(p^2+\biggl(\frac{2\pi n}{l}\biggr)^{\!2}+\frac{\Delta^2}{2}-\mu \biggr)^{\!2}-\frac{\Delta^4}{4}+\Delta^2\mu-E^2=0.$$
(A.5)
Using the assumption \(|\mu|\ll \min\{|\Delta|,\Delta^2\}\) in (A.5), we obtain that the spectrum of the operator \(H^{(n)}\), which coincides with matrix (A.2), is determined by the inequality
$$E^2\geqslant \biggl(\frac{2\pi n}{l}\biggr)^{\!4}+2\biggl(\frac{\Delta^2}{2}-\mu\biggr) \biggl(\frac{2\pi n}{l}\biggr)^{\!2}+\mu^2 \geqslant \mu^2$$
and decreases as \(|n|\) increases. Therefore, the spectrum of the Hamiltonian \(H\), which coincides with the union of the spectra of \(H^{(n)}\), \(n=0,\pm 1,\dots\) , is described by the inequality \(|E|\geqslant |\mu|\).

From (A.4) and (A.5), we have

$$ \frac{1}{d_n}=-\frac{1}{2a}\biggl(\frac{1}{p^2-p_+^2}-\frac{1}{p^2-p_-^2}\biggr),$$
(A.6)
where
$$ a=\sqrt{\frac{\Delta^4}{4}-\Delta^2\mu+E^2}, \qquad p_\pm=\sqrt{\pm a+\mu-\frac{\Delta^2}{2}-\biggl(\frac{2\pi n}{l}\biggr)^{\!2}}.$$
(A.7)

In what follows, we only consider the case \(n=\pm 1\) and use the assumption that \(\mu\) and \(O(1/l)\) are of the same order of magnitude. We obtain the Green’s function of the operators \(H^{(\pm 1)}\) near the edge points of the superconducting gap \((-|\mu|,|\mu|)\). By (A.7), we approximately have

$$ a=\frac{\Delta^2}{2}-\mu-\frac{\mu^2-E^2}{\Delta^2}, \qquad p_+=\frac{2\pi i n}{l}, \qquad p_-=i|\Delta|.$$
(A.8)
We note that
$$ p_+=\frac{i\sqrt{\mu ^2-E^2}}{|\Delta|}, \qquad n=0.$$
(A.9)

For definiteness, we consider the case of a topological phase \(\mu >0\). For the energies \(E=\mu-\varepsilon\), where \(0<\varepsilon\ll \mu\), we have \(a=\Delta^2/2-\mu-{2\mu \varepsilon}/(\Delta^2)\). From (A.3), (A.6), and (A.8), we obtain

$$ \begin{aligned} \, \widetilde{\psi}_\mathrm{e}^{(\pm 1)}(p)={}&\frac{1}{\Delta^2}\biggl( \biggl(p^2+\biggl(\frac{2\pi}{l}\biggr)^{\!2}\,\biggr)\widetilde{\varphi}_\mathrm{e}^{(\pm 1)}(p) -\Delta\biggl(ip\mp \frac{2\pi}{l}\biggr)\widetilde{\varphi}_\mathrm{h}^{(\pm 1)}(p)\biggr)\times{}\\ &\times \biggl(\frac{1}{p^2+(2\pi/l)^2}-\frac{1}{p^2+\Delta^2}\biggr),\\ \widetilde{\psi}_\mathrm{h}^{(\pm 1)}(p)={}&\frac{1}{\Delta^2}\biggl(\Delta\biggl(ip\pm \frac{2\pi}{l}\biggr)\widetilde{\varphi}_\mathrm{e}^{(\pm 1)}(p) -\biggl(p^2+\biggl(\frac{2\pi}{l}\biggr)^{\!2}-2\mu\biggr)\widetilde{\varphi}_\mathrm{h}^{(\pm 1)}(p)\biggr)\times{}\\ &\times \biggl(\frac{1}{p^2+(2\pi/l)^2}-\frac{1}{p^2+\Delta^2}\biggr). \end{aligned}$$
(A.10)

From this, by using the well-known relations

$$\begin{aligned} \, &\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \frac{e^{ipx}\widetilde{\varphi}(p)\,dp}{p^2-p_0^2}= -\frac{1}{2ip_0}\int_{-\infty}^{\infty} e^{ip_0|x-x'|}\varphi(x')\,dx',\\ &\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \frac{p e^{ipx}\widetilde{\varphi}(p)\,dp}{p^2-p_0^2}= -\frac{1}{2i}\int_{-\infty}^{\infty} e^{ip_0|x-x'|}\operatorname{sgn}(x-x')\varphi(x')\,dx' \end{aligned}$$
we obtain \(\Psi^{(\pm 1)}=(H^{(\pm 1)}-E)^{-1}\Phi^{(\pm 1)}\) (i.e., in fact, the resolvent):
$$ \begin{aligned} \, \psi_\mathrm{e}^{(\pm 1)}(x)={}&\frac{1}{2\Delta}\biggl( \operatorname{sgn}(\Delta)\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{e}^{(\pm1)}(x')\,dx'+{}\\ &+\int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx'\pm{} \\ &\pm \int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\,dx'-{}\\ &-\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx' \biggr),\\ \psi_\mathrm{h}^{(\pm 1)}(x)={}&\frac{1}{2\Delta}\biggl( \frac{\mu}{\Delta(\pi/l)} \int_{-\infty}^{\infty} e^{-|2\pi/l||x-x'|}\varphi_\mathrm{h}^{(\pm1)}(x')\,dx'-{}\\ &-\operatorname{sgn}(\Delta)\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{h}^{(\pm1)}(x')\,dx'-{}\\ &-\int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx'\pm{}\\ &\pm \int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\,dx'+{}\\ &+\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx' \biggr). \end{aligned}$$
(A.11)
In the case \(E=-\mu+\varepsilon\), \(\varepsilon>0\), we similarly obtain
$$ \begin{aligned} \, \psi_\mathrm{e}^{(\pm 1)}(x)={}&\frac{1}{2\Delta}\biggl( -\frac{\mu}{\Delta(\pi/l)} \int_{-\infty}^{\infty} e^{-|2\pi/l||x-x'|}\varphi_\mathrm{e}^{(\pm1)}(x')\,dx'+{}\\ &+\operatorname{sgn}(\Delta)\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{e}^{(\pm1)}(x')\,dx'+{}\\ &+\int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx'\pm{} \\ &\pm \int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\,dx'-{}\\ &-\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx' \biggr),\\ \psi_\mathrm{h}^{(\pm 1)}(x)={}&\frac{1}{2\Delta}\biggl( -\operatorname{sgn}(\Delta)\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{h}^{(\pm1)}(x')\,dx'-{}\\ &-\int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx'\pm{}\\ &\pm \int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\,dx'+{}\\ &+\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx' \biggr). \end{aligned}$$
(A.12)

We now assume that \(|E|\ll \mu\). As above, we obtain \(\Psi^{(\pm 1)}=(H^{(\pm 1)}-E)^{-1}\Phi^{(\pm 1)}\), and in this case, we have

$$ \begin{aligned} \, \psi_\mathrm{e}^{(\pm 1)}(x)={}&\frac{1}{2\Delta}\biggl( -\frac{\mu}{2\Delta (\pi/l)}\int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{e}^{(\pm1)}(x')\,dx'+{}\\ &+\operatorname{sgn}(\Delta)\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{e}^{(\pm1)}(x')\,dx'+{}\\ &+\int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx'\pm{} \\ &\pm \int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\,dx'-{}\\ &-\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{h}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx' \biggr),\\ \psi_\mathrm{h}^{(\pm 1)}(x)={}&\frac{1}{2\Delta}\biggl( \frac{\mu}{2\Delta(\pi/l)} \int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{h}^{(\pm1)}(x')\,dx'-{} \\ &-\operatorname{sgn}(\Delta)\int_{-\infty}^{\infty} -e^{-|\Delta||x-x'|}\varphi_\mathrm{h}^{(\pm1)}(x')\,dx'-{}\\ &-\int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx'\pm{}\\ &\pm \int_{-\infty}^{\infty} e^{-(2\pi/l)|x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\,dx'+{}\\ &+\int_{-\infty}^{\infty} e^{-|\Delta||x-x'|}\varphi_\mathrm{e}^{(\pm 1)}(x')\operatorname{sgn}(x-x')\,dx'\biggr). \end{aligned}$$
(A.13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuburin, Y.P., Tinyukova, T.S. Interaction between subbands in a quasi-one-dimensional superconductor. Theor Math Phys 210, 398–410 (2022). https://doi.org/10.1134/S0040577922030102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922030102

Keywords

Navigation