Skip to main content
Log in

Application of the \(\bar\partial\)-dressing method to a \((2+1)\)-dimensional equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A remarkable method for investigating solutions of nonlinear soliton equation is the \(\bar\partial\)-dressing method. Although there are other methods that can also be used for that aim, the \(\bar\partial\)-dressing method is the most transparent and leads directly to the final results. The \((2+1)\)-dimensional Sawada–Kotera equation is studied by analyzing the eigenfunction and the Green’s function of its Lax representation as well as by the inverse spectral transformation, yielding a new \(\bar\partial\) problem. The solution is constructed based on solving the \(\bar\partial\)-problem by choosing a proper spectral transformation. Furthermore, once the time evolution of the spectral data is determined, we are able to completely obtain a formal solution of the Sawada–Kotera equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (London Mathematical Society Lecture Note Series, Vol. 149), Cambridge Univ. Press, Cambridge (1991).

    Book  Google Scholar 

  2. R. Hirota, “A new form of Bäcklund transformations and its relation to the inverse scattering problem,” Progr. Theor. Phys., 52, 1498–1512 (1974).

    Article  ADS  Google Scholar 

  3. J. Weiss, M. Tabor, and G. Carnevale, “The Painlevé property for partial differential equations,” J. Math. Phys., 24, 522–526 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett., 27, 1192–1994 (1971).

    Article  ADS  Google Scholar 

  5. R. Hirota, The Direct Method in Soliton Theory (Cambridge Tracts in Mathematics, Vol. 155, A. Nagai, J. Nimmo, and C. Gilson, eds.), Cambridge Univ. Press, Cambridge (2004).

    Book  Google Scholar 

  6. R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation,” J. Math. Phys., 14, 805–809 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Hirota and J. Satsuma, “Nonlinear evolution equations generated from the Bäcklund transformation for the Toda lattice,” Progr. Theor. Phys., 57, 797–807 (1977).

    Article  ADS  Google Scholar 

  8. C. Rogers and W. F. Shadwick, Bäklund Transformations and Their Applications (Mathematics in Science and Engineering, Vol. 161), Academic Press, New York (1982).

    MATH  Google Scholar 

  9. A. M. Bruckner and J. B. Bruckner, “Darboux transformations,” Trans. Amer. Math. Soc., 128, 103–111 (1967).

    Article  MathSciNet  Google Scholar 

  10. V. E. Zakharov and S. V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions,” Funct. Anal. Appl., 19, 89–101 (1985).

    Article  Google Scholar 

  11. M. J. Ablowitz, D. Bar Jaacov, and A. S. Fokas, “On the inverse scattering transform for the Kadomtsev–Petviashvili equation,” Stud. Appl. Math., 69, 135–143 (1983).

    Article  MathSciNet  Google Scholar 

  12. V. G. Dubrovsky, “The application of the \(\bar\partial\)-dressing method to some integrable \((2+1)\)-dimensional nonlinear equations,” J. Phys. A: Math. Gen., 29, 3617–3630 (1996).

    Article  MathSciNet  Google Scholar 

  13. B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations. The Inverse Spectral Transform in \(2+1\) Dimensions, Springer Science, Business Media, New York (2013).

    Google Scholar 

  14. J. Zhu and X. Geng, “A hierarchy of coupled evolution equations with self-consistent sources and the dressing method,” J. Phys. A: Math. Theor., 46, 035204, 18 pp. (2012).

    Article  MathSciNet  ADS  Google Scholar 

  15. P. A. Deift and X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation,” Ann. Math., 137, 295–368 (1993).

    Article  MathSciNet  Google Scholar 

  16. V. E. Zakharov, “Commutating operators and nonlocal \(\bar\partial\)-problem,” in: Plasma Theory and Nonlinear and Turbulent Processes in Physics, Vol. 1 (Kiev, USSR, 13–25 April, 1987, N. S. Erokhin, V. E. Zakharov, A. G. Sitenko, V. M. Chernousenko, and V. G. Bar’yakhtar, eds.), Naukova Dumka, Kiev (1988), pp. 152–154.

    Google Scholar 

  17. B. G. Konopelchenko, Solitons in MultiDimensions. Inverse Spectral Transform, World Sci., Singapore (1993).

    Book  Google Scholar 

  18. E. V. Doktorov and S. B. Leble, A Dressing Method in Mathematical Physics (Mathematical Physics Studies, Vol. 28), Springer, Dordrecht (2007).

    Book  Google Scholar 

  19. A. S. Fokas and V. E. Zakharov, “The dressing method and nonlocal Riemann–Hilbert problems,” J. Nonlinear Sci., 2, 109–134 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  20. B. G. Konopelchenko and B. T. Matkarimov, “Inverse spectral transform for nonlinear evolution equation generating the Davey–Stewartson and Ishimory equations,” Stud. Appl. Math., 82, 319–359 (1990).

    Article  MathSciNet  Google Scholar 

  21. V. Dubrovsky and A. Topovsky, “Multi-lump solutions of KP equation with integrable boundary via \(\bar\partial\)-dressing method,” Phys. D, 414, 132740, 11 pp. (2020).

    Article  MathSciNet  Google Scholar 

  22. J. Zhu and Y. Kuang, “CUSP solitons to the long-short waves equation and the \(\bar\partial\)-dressing method,” Rep. Math. Phys., 75, 199–211 (2015).

    Article  MathSciNet  Google Scholar 

  23. Y. Kuang and J. Zhu, “The higher-order soliton solutions for the coupled Sasa–Satsuma system via the \(\bar\partial\)-dressing method,” Appl. Math. Lett., 66, 47–53 (2017).

    Article  MathSciNet  Google Scholar 

  24. B. G. Konopelchenko and V. G. Dubrovsky, “Some new integrable nonlinear evolution equations in \(2+1\) dimensions,” Phys. Lett. A, 102, 15–17 (1984).

    Article  MathSciNet  Google Scholar 

  25. A. P. Fordy and J. Gibbons, “Factorization of operators I. Miura transformations,” J. Math. Phys., 21, 2508–2510 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. M. Dye and A. Parker, “On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves,” J. Math. Phys., 42, 2567–2589 (2001).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant No. 11971475) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant No. KYCX21_2134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 465–474 https://doi.org/10.4213/tmf10096.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, X., Zhang, Y. & Zhao, S. Application of the \(\bar\partial\)-dressing method to a \((2+1)\)-dimensional equation. Theor Math Phys 209, 1717–1725 (2021). https://doi.org/10.1134/S0040577921120059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921120059

Keywords

Navigation