Skip to main content
Log in

Riemann–Hilbert approach for a (2+1) dimensional Kundu–Mukherjee–Naskar equation

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper concentrates on a (2+1) dimensional Kundu–Mukherjee–Naskar (KMN) equation. The (2+1) dimensional KMN equation was decomposed into two (1+1)-dimensional nonlinear evolution equations, resulting in the emergence of three spectral matrices. From these three spectral matrices, the Riemann–Hilbert problem of the (2+1) dimensional KMN equation is constructed. By solving the Riemann–Hilbert problem in the case that the jump matrix is identity matrix, that is, when the scattering data \(s_{12}(\lambda )\) and \(s_{21}(\lambda )\) are 0, the multi-soliton solutions for the (2+1) dimensional KMN equation are acquired. In particular, the one-soliton solution, two-soliton solution and three-soliton solution of the (2+1) dimensional KMN equation are given in detail. Substituting these solutions into Eq. (2) reveals that they satisfied Eq. (2) and are analyzed graphically. It can be seen from the picture that when \(\lambda \) is purely imaginary, the interaction between solitons is periodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Kundu, A., Mukherjee, A., Naskar, T.: Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. Proc. R. Soc. A 470, 20130576 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bashar, M.H., Arafat, S.M.Y., Islam, S.M.R., Islam, S., Rahman, M.M.: Extraction of some optical solutions to the (2+1)-dimensional Kundu–Mukherjee–Naskar equation by two efficient approaches. Partial Differ. Appl. Math. 6, 100404 (2022)

    Google Scholar 

  3. Mukherjee, A.: Novel curved lump and topological solitons of integrable (2+1) dimensional KMN equation. Optik 219, 165194 (2020)

    Article  Google Scholar 

  4. Günerhan, H.: Exact optical solutions of the (2+1) dimensions Kundu–Mukherjee–Naskar model via the new extended direct algebraic method. Mod. Phys. Lett. B 34, 2050225 (2020)

    Article  MathSciNet  Google Scholar 

  5. Jhangeer, A., Seadawy, A.R., Ali, F., Ahmed, A.: New complex waves of perturbed Shrödinger equation with Kerr law nonlinearity and Kundu–Mukherjee–Naskar equation. Results Phys. 16, 102816 (2020)

    Article  Google Scholar 

  6. He, J.H., El-Dibd, Y.O.: Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation. Results Phys. 19, 103345 (2020)

    Article  Google Scholar 

  7. Mamedov, K.H.R., Demirbilek, U., Ala, V.: Exact solutions of the (2+1)-dimensional Kundu–Mukherjee–Naskar model via IBSEFM. Bull. South Ural. Stat. 15, 17–26 (2022)

    Google Scholar 

  8. Zafar, A., Raheel, M., Ali, K.K., Mustafa, I., Qaisar, A.: Optical solitons to the Kundu–Mukherjee–Naskar equation in (2+1)-dimensional form via two analytical techniques. J. Laser Appl. 34, 022024 (2022)

    Article  Google Scholar 

  9. Chen, X.T., Zhang, Y., Li, J.L., Wang, R.: The N-soliton solutions for the matrix modified Korteweg–de Vries equation via the Riemann–Hilbert approach. Eur. Phys. J. Plus 135, 574 (2020)

    Article  Google Scholar 

  10. Ma, X., Xia, T.C.: Riemann–Hilbert approach and N-soliton solution of the generalized nonlinear Schrödinger equation. Phys. Scr. 94, 095203 (2019)

    Article  Google Scholar 

  11. Zhang, J.B., Zhang, Z.X.: A Riemann–Hilbert approach to the multicomponent Kaup–Newell equation. Adv. Math. Phys. 2020, 8844078 (2020)

    Article  MathSciNet  Google Scholar 

  12. Kang, Z.Z., Xia, T.C., Ma, X.: Multi-soliton solutions for the coupled Fokas–Lenells system via Riemann–Hilbert approach. Chin. Phys. Lett. 35, 070201 (2018)

    Article  Google Scholar 

  13. Xu, S.Q.: A coupled complex mKdV equation and its N-soliton solutions via the Riemann–Hilbert approach. Bound Value Probl. 2023, 83 (2023)

    Article  MathSciNet  Google Scholar 

  14. Li, Y., Li, J., Wang, R.Q.: N-soliton solutions for the Maxwell–Bloch equations via the Riemann–Hilbert approach. Mod. Phys. Lett. B 35, 2150356 (2021)

    Article  MathSciNet  Google Scholar 

  15. Wen, L.L., Zhang, N., Fan, E.G.: N-soliton solution of the Kudun-type equation via the Riemann–Hilbert approach. Acta. Math. Sci. 40, 113–126 (2020)

    Article  Google Scholar 

  16. Liu, T.S., Xia, T.C.: Multi-component generalized Gerdjikov–Ivanov integrable hierarchy and its Riemann–Hilbert problem. Nonlinear Anal-Real. 68, 103667 (2022)

    Article  MathSciNet  Google Scholar 

  17. Yang, Y.M., Xia, T.C., Liu, T.S.: General N-soliton solutions to the two types of nonlocal Gerdjikov–Ivanov equations via Riemann–Hilbert problem. Phys. Scr. 98, 055216 (2023)

    Article  Google Scholar 

  18. Xu, S.Q., Geng, X.G.: N-soliton solutions for the nonlocal two-wave interaction system via the Riemann–Hilbert method. Chin. Phys. B 27, 120202 (2018)

    Article  Google Scholar 

  19. Li, S., Xia, T.C., Wei, H.Y.: Riemann-Hilbert approach of the complex Sharma–Tasso–Olver equation and its N-soliton solutions. Chin. Phys. B 32, 040203 (2023)

    Article  Google Scholar 

  20. Ma, X.X., Zhu, J.Y.: Riemann-Hilbert problem and N-soliton solutions for the n-component derivative nonlinear Schrödinger equations. Commun. Nonlinear Sci. Numer. Simulat. 120, 107147 (2023)

    Article  Google Scholar 

  21. Li, J., Xia, T.C.: N-soliton solutions for the nonlocal Fokas–Lenells equation via RHP. Appl. Math. Lett. 113, 106850 (2021)

    Article  MathSciNet  Google Scholar 

  22. Guo, H.D., Xia, T.C., Tong, L.N.: Abundant solutions for the Lakshmanan–Porsezian–Daniel equation in an optical fiber through Riemann-Hilbert approach. Mod. Phys. Lett. B 36, 2250058 (2022)

    Article  MathSciNet  Google Scholar 

  23. Kang, Z.Z., Yang, R.C.: On multi-soliton solutions to the Heisenberg ferromagnetic spin chain equation in (2+1)-dimensions. arXiv:2204.08679v1 (2022)

  24. Zhang, Y.D., Zhang, Y., Zhang, H.Y., Xia, P.: Multi-soliton solutions for the three types of nonlocal Hirota equations via Riemann–Hilbert approach. Commun. Theor. Phys. 74, 115004 (2022)

  25. Liu, T.S., Xia, T.C.: Riemann–Hilbert problems and N-soliton solutions of the nonlocal reverse space-time Chen–Lee–Liu equation. Commun. Theor. Phys. 75, 035002 (2023)

    Article  MathSciNet  Google Scholar 

  26. Ma, L.N., Li, S., Wang, T.M., Xie, X.Y., Du, Z.: Multi-soliton solutions and asymptotic analysis for the coupled variable-coefficient Lakshmanan–Porsezian–Daniel equations via Riemann–Hilbert approach. Phys. Scr. 98, 075222 (2023)

    Article  Google Scholar 

  27. Qiu, D.Q., Zhang, Y.S., He, J.S.: The rogue wave solutions of a new (2+1)-dimensional equation. Commun. Nonlinear Sci. Numer. Simulat. 30, 307–315 (2016)

    Article  MathSciNet  Google Scholar 

  28. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under (Grant No. 12361052), the Natural Science Foundation of Inner Mongolia Autonomous Region, China under (Grant Nos. 2020LH01010, 2022ZD05), Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No. NMGIRT2414), the Fundamental Research Funds for the Inner Mongolia Normal University (Grant Nos. 2022JBTD007, 2022JBXC013), and Graduate Students Research & Innovation Fund of Inner Mongolia Autonomous Region (Grant No. B20231053Z). The Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education (2023KFZR01, 2023KFZR02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaqilao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhaqilao Riemann–Hilbert approach for a (2+1) dimensional Kundu–Mukherjee–Naskar equation. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09668-8

Keywords

Navigation