Skip to main content
Log in

Lagrangian BRST formulation of massive higher-spin fields of the general symmetry type

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the procedure of dimensional reduction of massless fields in \((d+1)\)-dimensional Minkowski space to massive fields in \(d\) dimensions in the first-quantized setting. The procedure is compatible with the Lagrangian and in a straightforward way determines the inner product for massive fields. The use of the Howe duality and the BRST technique allows keeping the description concise. We consider both bosonic and fermionic mixed-symmetry fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Lagrangians for higher-spin fermionic fields were first constructed in [19].

  2. A similar procedure in the anti-de Sitter space was discussed in [47] (also see [48]).

  3. The BRST description of bosonic massive fields in a similar setting was proposed in [49], [50].

  4. The standard alternative is to use \(im\) instead of \(m\) in the constraint to keep the momentum along the extra direction Hermitian. We use the real case of the constraint here. Although the momentum along the extra dimension is no longer Hermitian, all the operators involving it and used for describing the system are Hermitian. This is achieved by modifying the inner product on polynomials in \(a_i^A\) (see Eq. (2.50) below).

  5. A similar method for finding eigenvalues of Casimir operators was used in [47], [61], [62].

References

  1. C. Aragone, S. Deser, and Z. Yang, “Massive higher spin from dimensional reduction of gauge fields,” Ann. Phys., 179, 76–96 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  2. A. I. Pashnev, “Composite systems and field theory for a free Regge trajectory,” Theoret. and Math. Phys., 78, 272–277 (1989).

    Article  ADS  Google Scholar 

  3. X. Bekaert, I. L. Buchbinder, A. Pashnev, and M. Tsulaia, “On higher spin theory: strings, BRST, dimensional reductions,” Class. Quantum Grav., 21, S1457–1464 (2004); arXiv: hep-th/0312252.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Ann. Math., 40, 149–204 (1939).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. V. Bargmann and E. P. Wigner, “Group theoretical discussion of relativistic wave equations,” Proc. Nat. Acad. Sci. USA, 34, 211–223 (1948).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. X. Bekaert and N. Boulanger, “The unitary representations of the Poincaré group in any spacetime dimension,” SciPost Phys. Lect. Notes, 30, 1–47 (2021); arXiv: hep-th/0611263.

    Google Scholar 

  7. L. P. S. Singh and C. R. Hagen, “Lagrangian formulation for arbitrary spin. 1. The boson case,” Phys. Rev. D, 9, 898–909 (1974).

    Article  ADS  Google Scholar 

  8. L. P. S. Singh and C. R. Hagen, “Lagrangian formulation for arbitrary spin. II. The fermion case,” Phys. Rev. D, 9, 910–920 (1974).

    Article  ADS  Google Scholar 

  9. C. Fronsdal, “Massless fields with integer spin,” Phys. Rev. D, 18, 3624–3629 (1978).

    Article  ADS  Google Scholar 

  10. J. M. F. Labastida, “Massless bosonic free fields,” Phys. Rev. Lett., 58, 531–534 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. M. F. Labastida, “Massless particles in arbitrary representations of the Lorentz group,” Nucl. Phys. B, 322, 185–209 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  12. X. Bekaert and N. Boulanger, “Tensor gauge fields in arbitrary representations of \(GL(D,\mathbb R)\). Duality and Poincaré lemma,” Commun. Math. Phys., 245, 27–67 (2004); arXiv: hep-th/0208058.

    Article  ADS  MATH  Google Scholar 

  13. K. B. Alkalaev, M. Grigoriev, and I. Y. Tipunin, “Massless Poincaré modules and gauge invariant equations,” Nucl. Phys. B, 823, 509–545 (2009); arXiv: 0811.3999.

    Article  ADS  MATH  Google Scholar 

  14. A. K. H. Bengtsson, “A unified action for higher spin gauge bosons from covariant string theory,” Phys. Lett. B, 182, 321–325 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Ouvry and J. Stern, “Gauge fields of any spin and symmetry,” Phys. Lett. B, 177, 335–340 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Henneaux and C. Teitelboim, “First and second quantized point particles of any spin,” in: Quantum Mechanics of Fundamental Systems 2 (Centro de Estudios Cientificos de Santiago (CECS), 17–20 December, 1987, C. Teitelboim and J. Zanelli, eds.), Springer, Boston, MA (1989), pp. 113–152.

    Article  MathSciNet  Google Scholar 

  17. A. Sagnotti and M. Tsulaia, “On higher spins and the tensionless limit of string theory,” Nucl. Phys. B, 682, 83–116 (2004); arXiv: hep-th/0311257.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. G. Bonelli, “On the tensionless limit of bosonic strings, infinite symmetries and higher spins,” Nucl. Phys. B, 669, 159–172 (2003); arXiv: hep-th/0305155.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. W. Siegel, “Gauging Ramond string fields via \(OSp(1,1/2)\),” Nucl. Phys. B, 284, 632–642 (1987).

    Article  ADS  Google Scholar 

  20. D. Francia and A. Sagnotti, “On the geometry of higher-spin gauge fields,” Class. Quantum Grav., 20, S473–S485 (2003); arXiv: hep-th/0212185.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Reshetnyak, “General Lagrangian formulation for higher spin fields with arbitrary index symmetry. 2. Fermionic fields,” Nucl. Phys. B, 869, 523–597 (2013); arXiv: 1211.1273.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. K. Alkalaev, A. Chekmenev, and M. Grigoriev, “Unified formulation for helicity and continuous spin fermionic fields,” JHEP, 11, 050, 24 pp. (2018); arXiv: 1808.09385.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. V. E. Lopatin and M. A. Vasiliev, “Free massless bosonic fields of arbitrary spin in \(d\)-dimensional de Sitter space,” Modern Phys. Lett. A, 3, 257–270 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  24. I. L. Buchbinder, A. Pashnev, and M. Tsulaia, “Lagrangian formulation of the massless higher integer spin fields in the AdS background,” Phys. Lett. B, 523, 338–346 (2001); arXiv: hep-th/0109067.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yu. M. Zinoviev, “On massive high spin particles in (A)dS,” arXiv: hep-th/0108192.

  26. K. B. Alkalaev, O. V. Shaynkman, and M. A. Vasiliev, “On the frame-like formulation of mixed-symmetry massless fields in (A)\(dS_d\),” Nucl. Phys. B, 692, 363–393 (2004); arXiv: hep-th/0311164.

    Article  ADS  MATH  Google Scholar 

  27. E. D. Skvortsov, “Frame-like actions for massless mixed-symmetry fields in Minkowski space,” Nucl. Phys. B, 808, 569–591 (2009); arXiv: 0807.0903.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. Campoleoni, D. Francia, J. Mourad, and A. Sagnotti, “Unconstrained higher spins of mixed symmetry. I. Bose fields,” Nucl. Phys. B, 815, 289–367 (2009); arXiv: 0810.4350.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E. D. Skvortsov, “Gauge fields in \((A)dS_d\) and connections of its symmetry algebra,” J. Phys. A, 42, 385401, 30 pp. (2009); arXiv: 0904.2919.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. N. Boulanger, C. Iazeolla, and P. Sundell, “Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism,” JHEP, 07, 013, 61 pp. (2009); arXiv: 0812.3615.

    Article  ADS  MathSciNet  Google Scholar 

  31. X. Bekaert, N. Boulanger, and D. Francia, “Mixed-symmetry multiplets and higher-spin curvatures,” J. Phys. A: Math. Theor., 48, 225401, 17 pp. (2015); arXiv: 1501.02462.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. E. Joung and K. Mkrtchyan, “Weyl action of two-column mixed-symmetry field and its factorization around (A)dS space,” JHEP, 06, 135, 24 pp. (2016); arXiv: 1604.05330.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. J. Fang and C. Fronsdal, “Massless fields with half-integral spin,” Phys. Rev. D, 18, 3630–3633 (1978).

    Article  Google Scholar 

  34. M. A. Vasiliev, “Free massless fermionic fields of arbitrary spin in \(d\)-dimensional anti-de Sitter space,” Nucl. Phys. B, 301, 26–68 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  35. R. R. Metsaev, “Fermionic fields in the \(d\)-dimensional anti-de Sitter spacetime,” Phys. Lett. B, 419, 49–56 (1998); arXiv: hep-th/9802097.

    Article  ADS  MathSciNet  Google Scholar 

  36. K. B. Alkalaev, “Free fermionic higher spin fields in \(AdS_5\),” Phys. Lett. B, 519, 121–128 (2001); arXiv: hep-th/0107040.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. I. L. Buchbinder, V. A. Krykhtin, and A. Pashnev, “BRST approach to Lagrangian construction for fermionic massless higher spin fields,” Nucl. Phys. B, 711, 367–391 (2005); arXiv: hep-th/0410215.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. I. L. Buchbinder, V. A. Krykhtin, and A. A. Reshetnyak, “BRST approach to Lagrangian construction for fermionic higher spin fields in AdS space,” Nucl. Phys. B, 787, 211–240 (2007); arXiv: hep-th/0703049.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. P. Moshin and A. Reshetnyak, “BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields,” JHEP, 10, 040, 43 pp. (2007); arXiv: 0707.0386.

    Article  ADS  MathSciNet  Google Scholar 

  40. E. D. Skvortsov, “Mixed-symmetry massless fields in Minkowski space unfolded,” JHEP, 07, 004, 59 pp. (2008); arXiv: 0801.2268.

    Article  ADS  MathSciNet  Google Scholar 

  41. Yu. M. Zinoviev, “Frame-like gauge invariant formulation for mixed symmetry fermionic fields,” Nucl. Phys. B, 821, 21–47 (2009); arXiv: 0904.0549.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. A. Campoleoni, D. Francia, J. Mourad, and A. Sagnotti, “Unconstrained higher spins of mixed symmetry. II. Fermi fields,” Nucl. Phys. B, 828, 405–514 (2010); arXiv: 0904.4447.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. E. D. Skvortsov and Yu. M. Zinoviev, “Frame-like actions for massless mixed-symmetry fields in Minkowski space. Fermions,” Nucl. Phys. B, 843, 559–569 (2011); arXiv: 1007.4944.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Reshetnyak, “Constrained BRST–BFV Lagrangian formulations for higher spin fields in Minkowski spaces,” arXiv: 1803.04678.

  45. A. A. Reshetnyak, “Constrained BRST–BFV and BRST–BV Lagrangians for half-integer HS fields on \(R^{1,d-1}\),” Phys. Part. Nucl., 49, 952–957 (2018); arXiv: 1803.05173.

    Article  Google Scholar 

  46. M. Najafizadeh, “Local action for fermionic unconstrained higher spin gauge fields in AdS and dS spacetimes,” Phys. Rev. D, 98, 125012, 15 pp. (2018); arXiv: 1807.01124.

    Article  ADS  MathSciNet  Google Scholar 

  47. K. Alkalaev and M. Grigoriev, “Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type,” Nucl. Phys. B, 853, 663–687 (2011); arXiv: 1105.6111.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. G. Barnich and M. Grigoriev, “Parent form for higher spin fields on anti-de Sitter space,” JHEP, 08, 013, 38 pp. (2006); arXiv: hep-th/0602166.

    Article  ADS  MathSciNet  Google Scholar 

  49. A. A. Chekmenev, Dimensional reduction in first quantized BRST approach for free fields (Unpublished master thesis, superviser Grigoriev M. A.), MIPT, Moscow (2012).

    Google Scholar 

  50. R. R. Metsaev, “BRST–BV approach to cubic interaction vertices for massive and massless higher-spin fields,” Phys. Lett. B, 720, 237–243 (2013); arXiv: 1205.3131.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Yu. M. Zinoviev, “Toward frame-like gauge invariant formulation for massive mixed symmetry bosonic fields,” Nucl. Phys. B, 812, 46–63 (2009); arXiv: 0809.3287.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. R. R. Metsaev, “Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields,” JHEP, 11, 197, 60 pp. (2017); arXiv: 1709.08596.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. D. S. Ponomarev and M. A. Vasiliev, “Frame-like action and unfolded formulation for massive higher-spin fields,” Nucl. Phys. B, 839, 466–498 (2010); arXiv: 1001.0062.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. A. Pashnev and M. Tsulaya, “Dimensional reduction and BRST approach to the description of a Regge trajectory,” Modern Phys. Lett. A, 12, 861–870 (1997); arXiv: hep-th/9703010.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. I. L. Buchbinder and V. A. Krykhtin, “Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimensions,” Nucl. Phys. B, 727, 537–563 (2005); arXiv: hep-th/0505092.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. I. Buchbinder, V. Krykhtin, and P. Lavrov, “Gauge invariant Lagrangian formulation of higher spin massive bosonic field theory in AdS space,” Nucl. Phys. B, 762, 344–376 (2007); arXiv: hep-th/0608005.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. I. L. Buchbinder, V. A. Krykhtin, L. L. Ryskina, and H. Takata, “Gauge invariant Lagrangian construction for massive higher spin fermionic fields,” Phys. Lett. B, 641, 386–392 (2006); arXiv: hep-th/0603212.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. R. Howe, “Transcending classical invariant theory,” J. Amer. Math. Soc., 2, 535–552 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Howe, “Remarks on classical invariant theory,” Trans. Amer. Math. Soc., 313, 539–570 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Barnich, M. Grigoriev, A. Semikhatov, and I. Tipunin, “Parent field theory and unfolding in BRST first-quantized terms,” Commun. Math. Phys., 260, 147–181 (2005); arXiv: hep-th/0406192.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. K. B. Alkalaev and M. Grigoriev, “Unified BRST description of AdS gauge fields,” Nucl. Phys. B, 835, 197–220 (2010); arXiv: 0910.2690.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. K. B. Alkalaev and M. A. Grigoriev, “Continuous spin fields of mixed-symmetry type,” JHEP, 03, 030, 25 pp. (2018); arXiv: 1712.02317.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. J. M. F. Labastida, “Massless fermionic free fields,” Phys. Lett. B, 186, 365–369 (1987).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to K. Alkalaev and M. Grigoriev for suggesting the problem and the useful discussions.

Funding

The work was supported by the RFBR grant No. 18-02-01024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chekmenev.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 327–350 https://doi.org/10.4213/tmf10052.

Appendix A. $$\mathfrak{osp}(1|2n)$$ commutation relations

The \(\mathfrak{osp}(1|2n)\) basis elements are defined in (3.5) and (3.6). Their nonzero commutation relations in the even sector are

$$\begin{aligned} \, {} &[T_I^J,T_K^L]=\delta_K^JT_I^L-\delta_I^LT_K^J,\qquad [T^{IJ},T_{KL}]=\delta^I_KT_L^J+\delta^I_LT_K^J +\delta^J_KT_L^I+\delta^J_LT_K^I, \\ &[T_K^L,T_{IJ}]=\delta_J^LT_{KI}+\delta^L_IT_{KJ},\qquad [T^{IJ},T_K^L]=\delta^I_KT^{JL}+\delta^J_KT^{IL}, \end{aligned} $$
(A.1)
those in the odd sector are,
$$\{\Upsilon_I,\Upsilon_J\}=2T_{IJ},\qquad \{\Upsilon_I,\Upsilon^J\}=2T_I^J,\qquad \{\Upsilon^I,\Upsilon^J\}=2T^{IJ} $$
(A.2)
and in the cross sector,
$$\begin{alignedat}{3} &[T_{IJ},\Upsilon^K]=-\delta_I^K\Upsilon_J-\delta_J^K\Upsilon_K,&\qquad &[T^{IJ},\Upsilon^K]=0,&\qquad &[T_I^J,\Upsilon^K]=-\delta_I^K\Upsilon_J, \\ &[T^{IJ},\Upsilon_K]=\delta_I^K\Upsilon^J+\delta_K^J\Upsilon^I,&\qquad &[T_{IJ},\Upsilon_K]=0,&\qquad &[T_I^J,\Upsilon_K]=\delta_K^J\Upsilon_I \end{alignedat} $$
(A.3)

Appendix B. Casimir operators

The quadratic and quartic Casimir operators of the \(\mathfrak{iso}(p,q)\) algebra are

$$C_2(\mathfrak{iso}(p,q))=P_aP^a\equiv P^2,\qquad C_4(\mathfrak{iso}(p,q))=M_{ab}P^bM^{ac}P_c-\frac{1}{2}M^2P^2, $$
(B.1)
where \(P_a\) stands for translation and \(M_{ab}\) for rotation generators. In what follows, we express (B.1) in terms of the \(\mathfrak{osp}\) basis elements.

Regular spinor–tensor representation. Let \(\mathfrak{iso}(d-1,1)\) basis elements \(P_a\), \(M_{ab}\), \(a,b=0,\dots,d-1\) act on spinor–tensor fields as

$$P_a=\partial_a,\qquad M_{ab}=x_a\,\partial_b-x_b\,\partial_a +a_{ia}\bar a^i_b-a_{ib}\bar a^i_a +\biggl\{\frac{1}{4}(\theta_a\theta_b-\theta_b\theta_a)\biggr\}, $$
(B.2)
\(i=1,\dots,n\). Expressing the quadratic and quartic Casimir operators in terms of the \(\mathfrak{osp}(1|2n+2)\) basis elements, we find
$$\begin{aligned} \, &C_2(\mathfrak{iso}(d-1,1))=\Box, \end{aligned}$$
(B.3)
$$\begin{aligned} \, &C_4(\mathfrak{iso}(d-1,1))=((d-n-2)N_i^i+N_j^iN_i^j-T_{ij}T^{ij})\Box+{} \nonumber \\ &\hphantom{C_4(\mathfrak{iso}(d-1,1))={}}+T_{ij}D^iD^j+(2-d)D^\dagger_iD^i-2D^\dagger_jN_i^jD^i+D^\dagger_iD^\dagger_jT^{ij}+{} \nonumber \\ &\hphantom{C_4(\mathfrak{iso}(d-1,1))={}}+\biggl\{(\Upsilon_iD^i-D^\dagger_i\Upsilon^i)\widehat D +\biggl(N_i^i-\Upsilon_i\Upsilon^i+\frac{(d-1)(d-2)}{8}\biggr)\Box\biggr\}. \end{aligned}$$
(B.4)
Dropping terms in the curly brackets, we obtain the bosonic Casimir operator. We also note that the above expressions for the \(\mathfrak{osp}(1|2n+2)\) algebra elements remain valid for all the \(\mathfrak{iso}(k,l)\) algebras with \(k+l=d\).

Appendix C. Details of the dimensional reduction

Symmetric fields. We start with the case of symmetric fields (\(n=1\)). Then

$$\mathsf{\Omega}=\alpha(\widehat D+m\Gamma)+c_0(\Box+m^2) +c\biggl(D+m\,\frac{\partial}{\partial z}\biggr) +(D^\dagger+mz)\,\frac{\partial}{\partial b} -\alpha\alpha\,\frac{\partial}{\partial c_0} -c\,\frac{\partial}{\partial b}\,\frac{\partial}{\partial c_0}. $$
(C.1)
Triplet BRST operator (C.1) acts on the subspace singled out by the BRST-extended constraints
$$\widehat N_a\Psi=s\Psi,\qquad \widehat\Upsilon\Psi=0, $$
(C.2)
where
$$\widehat N_a=N_a+z\,\frac{\partial}{\partial z} +b\,\frac{\partial}{\partial b}+c\,\frac{\partial}{\partial c},\qquad \widehat\Upsilon=\Upsilon+\Gamma\,\frac{\partial}{\partial z} -2\alpha\,\frac{\partial}{\partial c} +\frac{\partial}{\partial\alpha}\,\frac{\partial}{\partial b}. $$
(C.3)

We introduce an additional grading

$$\operatorname{deg}z=1,\qquad \operatorname{deg}a^a=\operatorname{deg}b=\operatorname{deg}c=2. $$
(C.4)
BRST operator (C.1) then decomposes as \(\mathsf{\Omega}=\mathsf{\Omega}_{-1}+\mathsf{\Omega}_0+\mathsf{\Omega}_1\), where
$$\begin{aligned} \, &\mathsf{\Omega}_{-1}=mz\,\frac{\partial}{\partial b}, \\ &\mathsf{\Omega}_0=\alpha(\widehat D+m\Gamma) +c_0(\Box+m^2)+cD+D^\dagger\,\frac{\partial}{\partial b} -\alpha\alpha\,\frac{\partial}{\partial c_0} -c\,\frac{\partial}{\partial b}\,\frac{\partial}{\partial c_0}, \\ &\mathsf{\Omega}_1=mc\,\frac{\partial}{\partial z}. \end{aligned} $$
(C.5)

The whole space can be decomposed into the direct sum \(\mathcal E\oplus\mathcal G\oplus\mathcal F\), where \(\mathcal G=\operatorname{Im}\Omega_{-1}\) and \({\mathcal E\oplus\mathcal G=\operatorname{Ker}\Omega_{-1}}\):

$$\Psi=E+G+F=\varphi_0+\sum_{k=1}^\infty z^k\varphi_k +b\sum_{k=0}^\infty z^k\psi_k. $$
(C.6)
The operator
$$\overset{\mathcal G\mathcal F}{\Omega}\Psi\equiv(\Omega F)|_\mathcal G =\sum_{k=1}^\infty z^k\biggl(\biggl(D^\dagger+c\,\frac{\partial}{\partial c_0}\biggr) \psi_k+m\psi_{k-1}\biggr) $$
(C.7)
is algebraically invertible:
$$\overset{\mathcal E\mathcal E}{\Omega}\Psi \equiv(\Omega E)|_{\mathcal E} =\biggl(\alpha(\widehat D+m\Gamma)+c_0(\Box+m^2)+cD -\alpha\alpha\,\frac{\partial}{\partial c_0}\biggr)\varphi_0,$$
(C.8)
$$\overset{\mathcal G\mathcal E}{\Omega}\Psi\equiv(\Omega E)|_{\mathcal G}=0.$$
(C.9)
Hence, the reduced BRST operator \(\widetilde\Omega\) acting on \(H(\Omega_{-1})\cong\mathcal E\) is given by
$$\widetilde\Omega=\overset{\mathcal E\mathcal E}{\Omega} -\overset{\mathcal E\mathcal F}{\Omega}(\overset{\mathcal G\mathcal F}{\Omega})^{-1} \overset{\mathcal G\mathcal E}{\Omega} =\alpha(\widehat D+m\Gamma)+c_0(\Box+m^2) +cD-\alpha\alpha\,\frac{\partial}{\partial c_0}. $$
(C.10)
It acts on the intersection of \(\mathcal E\) and the subspace selected by (C.2):
$$\biggl(N_a+c\,\frac{\partial}{\partial c}\biggr)\varphi=s\varphi,\qquad \biggl(\Upsilon-2\alpha\,\frac{\partial}{\partial c}\biggr)\varphi=0. $$
(C.11)

We note that because the gauge is fixed, this space does not contain elements with negative ghost degree. The zero-ghost-degree component satisfies the relations

$$(\widehat D+m\Gamma)\varphi^{(0)}=0,\qquad N_a\varphi^{(0)}=s\varphi^{(0)},\qquad \Upsilon\varphi^{(0)}=0 $$
(C.12)
(from which \((\Box+m^2)\varphi^{(0)}=D\varphi^{(0)}=0\) follow.)

Mixed-symmetry fields. We can consequently repeat the argument used for symmetric fields. Namely, we introduce the grading

$$\operatorname{deg}z_i=1,\qquad \operatorname{deg}a^a_i =\operatorname{deg}b_i=\operatorname{deg}c_i=2, $$
(C.13)
for \(i=1,\dots,n\) and systematically perform homological reduction for each \(i\), effectively throwing out pairs of \(z_i\) and \(b_i\). The result is the reduced BRST operator
$$\widetilde{\mathsf{\Omega}} =\alpha(\widehat D+m\Gamma)+c_0(\Box+m^2) +c_iD^i-\alpha\alpha\,\frac{\partial}{\partial c_0}, $$
(C.14)
which acts on the subspace
$$\widehat N_i\psi=s_i\psi, \qquad \widehat N_i^j\psi=0\quad (i<j),\qquad \widehat\Upsilon^i\psi=0, $$
(C.15)
where
$$\widehat N_i^j=N_i^j+c_i\,\frac{\partial}{\partial c_j},\quad \widehat N_i=\widehat N_i^i\text{ (no sum)},\quad \widehat\Upsilon^i=\Upsilon^i-2\alpha\,\frac{\partial}{\partial c_i}. $$
(C.16)

The physical content of the system (the zero-ghost-degree cohomology) is

$$\begin{aligned} \, &(\widehat D+m\Gamma)\psi^{(0)}=0,\qquad N_i\psi^{(0)}=s_i\psi^{(0)}, \\ &N_i^j\psi^{(0)}=0\quad (i<j),\qquad \Upsilon^i\psi^{(0)}=0 \end{aligned} $$
(C.17)
(whence the relations \((\Box+m^2)\psi^{(0)}=D^i\psi^{(0)}=0\) follow.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekmenev, A.A. Lagrangian BRST formulation of massive higher-spin fields of the general symmetry type. Theor Math Phys 209, 1599–1619 (2021). https://doi.org/10.1134/S0040577921110076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921110076

Keywords

Navigation