Skip to main content
Log in

On a free boundary problem for the relaxation transfer equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the free boundary problem with no initial conditions for a third-order relaxation transfer equation. First, we reduce the problem to a second-order equation and prove the uniqueness theorem. The solution of this problem is constructed as a limit of solutions of corresponding problems that are first reduced to a Stefan-type problem with initial conditions. Free boundary behavior is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fülöp, R. Kovács, Á. Lovas, Á. Rieth, T. Fodor, M. Szücs, P. Ván, and G. Gróf, “Emergency of non-Fourier hierarchies,” Entropy, 20, 832, 13 pp. (2018); arXiv: 1808.06858.

    Article  ADS  Google Scholar 

  2. I. V. Kudinov, Matematicheskoe modelirovanie lokal’no-neravnovesnykh protsessov perenosa teploty, massy, impul’sa s uchetom relaksatsionnykh yavleniy [in Russian], Diss. … dokt. fiz.-matem. nauk, Samar. Gos. Tekhn. Univ., Samara (2017).

    Google Scholar 

  3. R. A. Guyer and J. A. Krumhansl, “Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals,” Phys. Rev., 148, 778–788 (1966).

    Article  ADS  Google Scholar 

  4. P. Ván, “Weakly nonlocal irreversible thermodynamics – the Guyer–Krumhansl and the Cahn–Hilliard,” equations Phys. Lett. A, 290, 88–92 (2001); arXiv: cond-mat/010656.

    Article  ADS  Google Scholar 

  5. K. V. Zhukovsky, “Exact solution of Guyer–Krumhansl type heat equation by operational method,” Internat. J. Heat Mass Transf., 96, 132–144 (2016).

    Article  Google Scholar 

  6. R. Kovács, “Analytic solution of Guyer–Krumhansl equation for laser flash experiments,” Internat. J. Heat Mass Transf., 127, Part A, 631–636 (2018).

    Article  Google Scholar 

  7. D. Y. Tzou, Macro- to Micro-Scale Heat Transfer: The Lagging Behavior, John Wiley and Sons, New York (2015).

    Google Scholar 

  8. P. Rogolino, R. Kovács, P. Ván, and V. A. Cimmelli, “Generalized heat-transport equations: parabolic and hyperbolic models,” Contin. Mech. Thermodyn., 30, 1245–1258 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Kovács and P. Ván, “Thermodynamical consistency of the Dual Phase Lag heat conduction equation,” Contin. Mech. Thermodyn., 30, 1223–1230 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Mollica, L. Preziosi, and K. R. Rajagopal (eds.), Modeling of Biological Materials, Burkhäuser, Boston (2007).

    Book  Google Scholar 

  11. A. Friedman, “Free boundary problems in biology,” Phil. Trans. Roy. Soc. A, 373, 20140368, 16 pp. (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Colli, A. Favini, E. Rocca, G. Schimperna, and J. Sprekels (eds.), Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, (Springer INdAM Series, Vol. 22), Springer, Berlin (2017).

    Book  Google Scholar 

  13. I. N. Figueiredo and L. Santos, Free Boundary Problems: Theory and Applications, (International Series of Numerical Mathematics, Vol. 154), Birkhäuser, Basel (2007).

    Book  Google Scholar 

  14. I. I. Danilyuk, “On the Stefan problem,” Russian Math. Surveys, 40, 157–223 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. V. Bazaliy and A. Friedman, “A free boundary problem for an elliptic-parabolic system: application to a model of tumor growth,” Commun. Partial Differ. Equ., 28, 517–560 (2003).

    Article  MathSciNet  Google Scholar 

  16. L. I. Rubinstein, The Stefan Problem, (Translations of Mathematical Monographs, Vol. 27), AMS, Providence, RI (1971).

    Google Scholar 

  17. A. M. Meirmanov, The Stefan Problem, (De Gruyter Expositions in Mathematics, Vol. 3), Walter de Gruyter, Berlin–New York (1992).

    Book  Google Scholar 

  18. A. Friedman, Partial Differential Equation of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ (1964).

    MATH  Google Scholar 

  19. V. A. Florin, “Uplotnenie zemlyanoy sredy i fil’tratsiya pri peremennoy poristosti s uchetom vliyaniya svyazannoy vody” [in Russian], Izv. AN SSSR, OTN, 11, 1625–1649 (1951).

    Google Scholar 

  20. T. D. Wentzel, “A free boundary problem for the heat equation,” Sov. Math. Dokl., 1, 358–361 (1960).

    MathSciNet  MATH  Google Scholar 

  21. Nguen Din Chi, “Ob odnoy zadache so svobodnoy granitsey dlya parabolicheskogo uravneniya” [in Russian], Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 40–54 (1966).

    Google Scholar 

  22. G. I. Bizhanova, Mnogomernye zadachi Stefana i Florina v vesovykh Gel’derovskikh prostranstvakh funktsiy” [in Russian], Diss. … dokt. fiz.-matem. nauk, In-t teoret. i prikl. matem. NAN RK, Almaty (1994).

    Google Scholar 

  23. G. I. Bizhanova, “On the classical solvability of one-dimensional free boundary Florin, Muskat–Verigin and Stefan problems,” J. Math. Sci. (N.Y.), 99, 816–836 (2000).

    Article  Google Scholar 

  24. L. Fusi and A. Farina, “Pressure-driven flow of a rate type fluid with stress threshold in an infinite channel,” Internat. J. Non-Linear Mech., 45, 991–1000 (2011).

    Article  ADS  Google Scholar 

  25. A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett., 107, 095901, 4 pp. (2011).

    Article  ADS  Google Scholar 

  26. M. Maldovan, “Transition between ballistic and diffusive heat transport regimes in silicon materials,” Appl. Phys. Lett., 101, 113110, 5 pp. (2012).

    Article  ADS  Google Scholar 

  27. S. Both, B. Czél, T. Fülöp, G. Gróf, Á. Gyenis, R. Kovács, P. Ván, and J. Verhás, “Deviation from the Fourier law in room-temperature heat pulse experiments,” J. Non-Equilib. Thermodyn., 41, 41–48 (2016); arXiv: 1506.05764.

    Article  ADS  Google Scholar 

  28. K. Mitra, S. Kumar, A. Vedevarz, and M. K. Moallemi, “Experimental evidence of hyperbolic heat conduction in process meat,” J. Heat Transfer, 117, 568–573 (1995).

    Article  Google Scholar 

  29. G. I. Barenblatt and A. Yu. Ishlinsky, “On the impact of a visco-plastic rod on a rigid obstacle,” J. Appl. Math. Mech., 26, 740–748 (1962).

    Article  Google Scholar 

  30. S. N. Kruzhkov, “On some problems with unknown boundaries for the heat conduction equation,” J. Appl. Math. Mech., 31, 1014–1024 (1968).

    Article  MathSciNet  Google Scholar 

  31. V. A. Solonnikov and A. Fasano, “One-dimensional parabolic problem arising in the study of some free boundary problems,” J. Math. Sci. (N.Y.), 115, 2066–2075 (2003).

    Article  MathSciNet  Google Scholar 

  32. J. O. Takhirov and R. N. Turaev, “The free boundary problem without initial condition,” J. Math. Sci., 187, 86–100 (2012).

    Article  MathSciNet  Google Scholar 

  33. S. N. Kruzhkov, “Nonlinear parabolic equations with two independent variable,” Trans. Moscow Math. Soc., 16, 329–346 (1967).

  34. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, (Translations of Mathematical Monographs, Vol. 23), AMS, Providence, RI (1988).

    Google Scholar 

  35. A. Fasano and M. Primicerio, “General free-boundary problems for the heat equation,” J. Math. Anal. Appl., 57, 694–723 (1977).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Takhirov.

Ethics declarations

The authors declare no conflicts of interests.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 184–202 https://doi.org/10.4213/tmf10113.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takhirov, J.O., Umirkhonov, M.T. On a free boundary problem for the relaxation transfer equation. Theor Math Phys 209, 1473–1489 (2021). https://doi.org/10.1134/S0040577921100093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921100093

Keywords

Navigation