Skip to main content
Log in

Emergent Planck mass and dark energy from affine gravity

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a novel model of affine gravity, which implements the no-scale scenario. Namely, the Planck mass and Hubble constant emerge dynamically in our model, through the mechanism of spontaneous breaking of scale invariance. This naturally gives rise to inflation, thus introducing a new inflationary mechanism. Moreover, the time direction and nondegenerate metric emerge dynamically as well, which allows considering the usual General Relativity as an effective theory. We show that our model is phenomenologically viable, both from the perspective of the direct tests of gravity and from the standpoint of cosmological evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a general \(w\), this procedure may require redefining \(\varphi\) to be a purely imaginary field. In that case, by \(\varphi\)’s value one should understand its absolute value.

  2. \(\varkappa=-4\) corresponds to a special solution for which \(H=0\) and \(v\) is time-dependent. We do not consider this case here.

References

  1. A. Einstein, “The theory of the affine field,” Nature, 112, 448–449 (1923).

    Article  ADS  Google Scholar 

  2. R. D. Carmichael, “Book review: A. S. Eddington. The Mathematical Theory of Relativity,” Bull. Amer. Math. Soc., 31, 563–563 (1925).

    Article  MathSciNet  Google Scholar 

  3. E. Schrödinger, “The general unitary theory of the physical fields,” Proc. Roy. Irish Acad. Sec. A, 49, 43–58 (1943).

    MathSciNet  MATH  Google Scholar 

  4. E. Schrödinger, “The union of the three fundamental fields (gravitation, meson, electromagnetism),” Proc. Roy. Irish Acad. Sec. A, 49, 275–287 (1943).

    MathSciNet  MATH  Google Scholar 

  5. E. Schrödinger, “Space-time Structure,” Cambridge Univ. Press, Cambridge (1956).

  6. E. Schrödinger, “The affine connexion in physical field theories,” Nature, 153, 572–575 (1944).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J. Kijowski, “On a new variational principle in general relativity and the energy of the gravitational field,” Gen. Rel. Grav., 9, 857–877 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. Ferraris and J. Kijowski, “General relativity is a gauge type theory,” Lett. Math. Phys., 5, 127–135 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D.-E. Liebscher, “Purely affine theories,” Ann. Phys., 500, 200–204 (1988).

    Article  MATH  Google Scholar 

  10. E. S. Fradkin and A. A. Tseytlin, “Quantum equivalence of dual fiel theories,” Ann. Phys., 162, 31–48 (1985).

    Article  ADS  Google Scholar 

  11. T. Ortín, Gravity and Strings, Cambridge Univ. Press, Cambridge (2004).

    Book  MATH  Google Scholar 

  12. G. Magnano, “Are there metric theories of gravity other than general relativity?” in: General Relativity and Gravitational Physics (Proceedings of 11th Italian Conference, Trieste, Italy, September 26–30, 1994, M. Carfora, M. Cavaglia, P. Fre et al., eds.), World Sci., Singapore (1995), pp. 213–234; arXiv: gr-qc/9511027.

    ADS  MathSciNet  MATH  Google Scholar 

  13. P. Minkowski, “On the spontaneous origin of newtons constant,” Phys. Lett. B, 71, 419–421 (1977).

    Article  ADS  Google Scholar 

  14. A. Zee, “Broken-symmetric theory of gravity,” Phys. Rev. Lett., 42, 417–420 (1979).

    Article  ADS  Google Scholar 

  15. Y. Fujii, “Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory,” Phys. Rev. D, 26, 2580–2588 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. E. Shaposhnikov and D. Zenhäusern, “Scale invariance, unimodular gravity and dark energy,” Phys. Lett. B, 671, 187–192 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Blas, M. Shaposhnikov, and D. Zenhäusern, “Scale-invariant alternatives to general relativity,” Phys. Rev. D, 84, 044001, 21 pp. (2011); arXiv: 1104.1392.

    Article  ADS  Google Scholar 

  18. J. Kubo, M. Lindner, K. Schmitz, and M. Yamada, “Planck mass and inflation as consequences of dynamically broken scale invariance,” Phys. Rev. D, 100, 015037, 17 pp. (2019); arXiv: 1811.05950.

    Article  ADS  MathSciNet  Google Scholar 

  19. A. B. Borisov and V. I. Ogievetskii, “Theory of dynamical affine and conformal symmetries as the theory of the gravitational field,” Theoret. and Math. Phys., 21, 1179–1188 (1974).

    Article  ADS  Google Scholar 

  20. C. Cutler and R. M. Wald, “A new type of gauge invariance for a collection of massless spin-\(2\) fields. I. Existence and uniqueness,” Class. Quantum Grav., 4, 1267–1278 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. T. P. Sotiriou and V. Faraoni, “\(f(R)\) theories of gravity,” Rev. Modern Phys., 82, 451–497 (2010); arXiv: 0805.1726.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J. B. Jiménez, L. Heisenberg, G. J. Olmo, and D. Rubiera-Garcia, “Born–Infeld inspired modifications of gravity,” Phys. Rep., 727, 1–129 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Ferraris and J. Kijowski, “Unified geometric theory of electromagnetic and gravitational interactions,” Gen. Rel. Grav., 14, 37–47 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. K. Krasnov, “Non-metric gravity: a status report,” Modern Phys. Lett. A, 22, 3013–3026 (2007); arXiv: 0711.0697.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K. Krasnov, “Pure connection action principle for general relativity,” Phys. Rev. Lett., 106, 251103, 4 pp. (2011); arXiv: 1103.4498.

    Article  ADS  Google Scholar 

  26. N. J. Poplawski, “Gravitation, electromagnetism and cosmological constant in purely affine gravity,” Found. Phys., 39, 307–330 (2009); arXiv: gr-qc/0701176.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. N. Poplawski, “Affine theory of gravitation,” Gen. Rel. Grav., 46, 1625, 11 pp. (2014); arXiv: 1203.0294.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. O. Castillo-Felisola and A. Skirzewski, “Einstein’s gravity from a polynomial affine model,” Class. Quantum Grav., 35, 055012, 23 pp. (2018); arXiv: 1505.04634.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. O. Castillo-Felisola, J. Perdiguero, O. Orellana, and A. R. Zerwekh, “Emergent metric and geodesic analysis in cosmological solutions of (torsion-free) polynomial affine gravity,” Class. Quant. Grav., 37, 075013, 30 pp. (2020); arXiv: 1908.06654.

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Azri and D. Demir, “Induced affine inflation,” Phys. Rev. D, 97, 044025, 7 pp. (2018); arXiv: 1802.00590.

    Article  ADS  Google Scholar 

  31. H. Azri, “Cosmological implications of affine gravity”; arXiv: 1805.03936.

  32. S. Weinberg, “Photons and gravitons in \(S\)-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass,” Phys. Rev. B, 135, 1049–1056 (1964).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S. Deser, “Self-interaction and gauge invariance,” Gen. Rel. Grav., 1, 9–18 (1970); arXiv: gr-qc/0411023.

    Article  ADS  MathSciNet  Google Scholar 

  34. D. G. Boulware and S. Deser, “Classical general relativity derived from quantum gravity,” Ann. Phys., 89, 193–240 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  35. R. M. Wald, “Spin-two fields and general covariance,” Phys. Rev. D, 33, 3613–3625 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  36. D. N. Vollick, “Born–Infeld–Einstein theory with matter,” Phys. Rev. D, 72, 084026, 6 pp. (2005); arXiv: gr-qc/0506091.

    Article  ADS  MathSciNet  Google Scholar 

  37. H. B. Nielsen and M. Ninomiya, “\(\beta\)-Function in a non-covariant Yang–Mills theory,” Nucl. Phys. B, 141, 153–177 (1978).

    Article  ADS  Google Scholar 

  38. S. Chadha and H. B. Nielsen, “Lorentz invariance as a low energy phenomenon,” Nucl. Phys. B, 217, 125–144 (1983).

    Article  ADS  Google Scholar 

  39. G. Bednik, O. Pujolàs, and S. Sibiryakov, “Emergent Lorentz invariance from strong dynamics: holographic examples,” JHEP, 11, 064 (2013); arXiv: 1305.0011.

    Article  ADS  Google Scholar 

  40. V. Rubakov, “Lorentz-violating graviton masses: getting around ghosts, low strong coupling scale and VDVZ discontinuity”; arXiv: hep-th/0407104.

  41. S. L. Dubovsky, “Phases of massive gravity,” JHEP, 10, 076, 31 pp. (2004); arXiv: hep-th/0409124.

    Article  ADS  MathSciNet  Google Scholar 

  42. V. A. Rubakov and P. G. Tinyakov, Phys. Usp., 51, 759–792 (2008); arXiv: 0802.4379.

    Article  ADS  Google Scholar 

  43. D. Blas and S. Sibiryakov, “Completing Lorentz violating massive gravity at high energies,” JETP, 120, 509–524 (2015); arXiv: 1410.2408.

    Article  ADS  Google Scholar 

  44. P. Hořava, “Quantum gravity at a Lifshitz point,” Phys. Rev. D, 79, 084008, 15 pp. (2009); arXiv: 0901.3775.

    Article  ADS  MathSciNet  Google Scholar 

  45. P. Hořava, “Membranes at quantum criticality,” JHEP, 03, 020, 34 pp. (2009).

    Article  ADS  MathSciNet  Google Scholar 

  46. T. Asaka, S. Blanchet, and M. Shaposhnikov, “The \(\nu\)MSM, dark matter and neutrino masses,” Phys. Lett. B, 631, 151–156 (2005); arXiv: hep-ph/0503065.

    Article  ADS  Google Scholar 

  47. J. Greensite, “Dynamical origin of the Lorentzian signature of spacetime,” Phys. Lett. B, 300, 34–37 (1993); arXiv: gr-qc/9210008.

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Elizalde, S. D. Odintsov, and A. Romeo, “Dynamical determination of the metric signature in space-time of nontrivial topology,” Class. Quantum Grav., 11, L61–L67 (1994); arXiv: hep-th/9312132.

    Article  ADS  MATH  Google Scholar 

  49. A. Carlini and J. Greensite, “Why is spacetime Lorentzian?,” Phys. Rev. D, 49, 866–878 (1994); arXiv: gr-qc/9308012.

    Article  ADS  MathSciNet  Google Scholar 

  50. S. W. MacDowell and F. Mansouri, “Unified geometric theory of gravity and supergravity,” Phys. Rev. Lett., 38, 739–742 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  51. A. H. Chamseddine, “Massive supergravity from spontaneously breaking orthosymplectic gauge symmetry,” Ann. Phys., 113, 219–234 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  52. A. H. Chamseddine and P. C. West, “Supergravity as a gauge theory of supersymmetry,” Nucl. Phys. B, 129, 39–44 (1977).

    Article  ADS  Google Scholar 

  53. K. S. Stelle and P. C. West, “Spontaneously broken de Sitter symmetry and the gravitational holonomy group,” Phys. Rev. D, 21, 1466–1488 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  54. F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman, “Metric affine gauge theory of gravity: field equations Noether identities, world spinors, and breaking of dilation invariance,” Phys. Rept., 258, 1–171 (1995); arXiv: gr-qc/9402012.

    Article  ADS  MathSciNet  Google Scholar 

  55. A. Einstein, The Meaning of Relativity, Routledge, London–New York (2003).

    Book  MATH  Google Scholar 

  56. B. Julia and S. Silva, “Currents and superpotentials in classical gauge invariant theories. 1. Local results with applications to perfect fluids and general relativity,” Class. Quantum Grav., 15, 2173–2215 (1998); arXiv: gr-qc/9804029.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. N. Dadhich and J. M. Pons, “On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations of general relativity for an arbitrary connection,” Gen. Rel. Grav., 44, 2337–2352 (2012); arXiv: 1010.0869.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. L. P. Eisenhart, Non-Riemannian Geometry, Dover, New York (2012).

    MATH  Google Scholar 

  59. K. Borchsenius, “An extension of the nonsymmetric unified field theory,” Gen. Rel. Grav., 7, 527–534 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  60. N. J. Poplawski, “A unified, purely affine theory of gravitation and electromagnetism”; arXiv: 0705.0351.

  61. K. Krasnov and R. Percacci, “Gravity and unification: a review,” Class. Quantum Grav., 35, 143001, 55 pp. (2018); arXiv: 1712.03061.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. N. V. Kharuk, S. N. Manida, S. A. Paston, and A. A. Sheykin, “Modifying the theory of gravity by changing independent variables,” EPJ Web Conf., 191, 07007, 7 pp. (2018); arXiv: 1811.00831.

    Article  Google Scholar 

  63. K. Peeters, “Cadabra2: computer algebra for field theory revisited,” J. Open Source Software, 3, 1118, 2 pp. (2018).

    Article  ADS  Google Scholar 

  64. K. Peeters, “Introducing Cadabra: a symbolic computer algebra system for field theory problems”; arXiv: hep-th/0701238.

  65. C. M. Will, “The confrontation between general relativity and experiment,” Living Rev. Relativity, 17, 4, 117 pp. (2014); arXiv: 1403.7377.

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks V. Rubakov and A. Shkerin for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kharuk.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 125–141 https://doi.org/10.4213/tmf10069.

Appendix: Linearized limit

To verify the phenomenological validity of scalar–affine gravity, we show that the linearized limit of our model coincides with that of GR. We parameterize the fluctuations of the metric as

$$ g_{00}=\eta_{00}+h_{00},\qquad g_{ij}=a^2(\eta_{ij}+h_{ij}),\qquad g_{0i}=h_{0i},$$
(A.1)
where \(h_{\mu\nu}\) are fluctuations of the metric. In the remainder of this appendix, the sum is taken with respect to the flat metric \(\delta_{ij}\), and we do not distinguish between upper and lower indices. We use the \(3+1\) decomposition
$$h_{00}= 2\Phi,$$
(A.2a)
$$h_{0i}=\partial_i Z+Z_i^T,$$
(A.2b)
$$h_{ij}=-2\Psi\delta_{ij}+2\partial_i\partial_j E+\partial_{(i}W_{j)}^T+h_{ij}^{TT},$$
(A.2c)
where, as usual,
$$ \partial_i Z_i^T=0,\qquad \partial_i W_i^T=0,\qquad \partial_i h_{ij}^{TT}=0,\qquad h_{ii}^{TT}=0,$$
(A.3)
and impose the gauge \(h_{0i}=0\).

For our choice of the constant \(c=-3\), \(\varphi\) follows the dynamics of the determinant of the metric. Hence, their fluctuations are the same. However, we also need to obtain a formula governing the fluctuations of the covariant derivatives of \(\varphi\). For the \(v_\mu\) fluctuations, \(v_\mu=v_\mu^{\mathrm{vac}}+u_\mu\), we then obtain the equation

$$ -(a^3\partial_0+3a^2\partial_0 a)\biggl(u_0+\frac{v}{2}(h+h_{00})\biggr)+a\partial_i u_j=0,$$
(A.4)
where \(h=h_i^i\). The solution of this equation is
$$ u_0=-\frac{v}{2}(h-h_{00})-u,\qquad \dot u+3Hu+a^{-2}\partial_i u_i=0.$$
(A.5)

We now consider the equations of motion for the perturbations of the metric. As follows from Eq. (3.13), the terms quadratic in \(h_{\mu\nu}\) are suppressed if

$$ h_{\cdot\cdot}\ll 1,\qquad v h_{\cdot\cdot} h_{\cdot\cdot}\ll\partial_{\cdot} h_{\cdot\cdot},$$
(A.6)
where dots stay for some indices. The first condition is standard. The second constraint appears due to the nonzero nonmetricity and its validity should be verified after obtaining the solution of the equations of motion.

We use Cadabra software [63], [64] for obtaining the equations of motion for the perturbed metric. The result is that the equations of motion in the spin-2 and spin-1 sectors are the same as those in GR on the de Sitter background. Hence, gravitational waves are the same in our model as in GR, and vector perturbations are stable.

In the spin-0 sector in the gauge \(E=0\), the equations of motion are

$$\begin{alignedat}{3} &(00):&\quad &3H(2H+3v)\Phi+27Hv\Psi+3(u'+3Hu+a^{-2}\partial_i u_i)-{} \nonumber\\ &&&-6H\Psi'+2a^{-2}\triangle\Psi=0, \end{alignedat}$$
(A.7a)
$$\begin{alignedat}{3} &(0i): &\quad &\partial_i(H\Phi-\Psi')=0, \end{alignedat}$$
(A.7b)
$$\begin{alignedat}{3} &(ij): &\quad &\partial_i\partial_j(\Phi+\Psi)-\delta_{i j}\bigl(\triangle(\Phi+\Psi)+a^2(3H(2H+3v)\Phi+{} \nonumber\\ &&&+27Hv\Psi+2H\Phi'-6H\Psi'-2\Psi'')\bigr)=0, \end{alignedat}$$
(A.7c)
where \(\triangle=\partial_i\partial_i\). After taking Eq. (A.5) into account, these equations become the same as in GR. Thus, scalar–affine gravity is fully equivalent to GR in the linearized limit. In particular, it follows from Eqs. (A.7c) that \(\Psi+\Phi=0\). Hence, our model passes experimental constraints on the difference of these potentials [65]. In particular, by introducing a point-like particle of mass \(M\) at the origin of the coordinates, we recover Newton’s law. Requirement (A.6) is then fulfilled if
$$ H\ll\frac{M_{\mathrm{Pl}}^2}{M},$$
(A.8)
which holds in all cases of physical interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharuk, I.V. Emergent Planck mass and dark energy from affine gravity. Theor Math Phys 209, 1423–1436 (2021). https://doi.org/10.1134/S004057792110007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057792110007X

Keywords

Navigation