Skip to main content
Log in

Explicit construction of \(N=2\) superconformal orbifolds

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Following Gepner’s approach, we propose a construction of models of tensor product orbifolds of the minimal models of two-dimensional field theory with \(N=2\) superconformal symmetry. To build models that satisfy the requirements of modular invariance, we use a spectral flow transformation. We demonstrate this construction with a specific example and show that its application ensures the modular invariance of the partition function simultaneously with the mutual locality of the fields of the theory under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gepner, “Exactly solvable string compactifications on manifolds of \({\rm SU}(N)\) holonomy,” Phys. Lett. B, 199, 380–388 (1987); “Space-time supersymmetry in compactified string theory and superconformal models,” Nucl. Phys. B, 296, 757–778 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  2. B. R. Greene and M. R. Plesser, “Duality in Calabi–Yau moduli space,” Nucl. Phys. B, 338, 15–37 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Gliozzi, J. Scherk, and D. Olive, “Supersymmetry, supergravity theories and the dual spinor model,” Nucl. Phys. B, 122, 253–290 (1977).

    Article  ADS  Google Scholar 

  4. T. Eguchi, H. Ooguri, A. Taormina, and S.-K. Yang, “Superconformal algebras and string compactification on manifolds with \({\rm SU}(n)\) holonomy,” Nucl. Phys. B, 315, 193–221 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  5. B. L. Feigin, A. M. Semikhatov, V. A. Sirota, and I. Yu. Tipunin, “Resolutions and characters of irredicible representations of the \(N=2\) superconformal algebra,” Nucl. Phys. B, 536, 617–656 (1998); arXiv: hep-th/9805179.

    Article  ADS  Google Scholar 

  6. B. L. Feigin and A. M. Semikhatov, “Free-field resolutions of the unitary \(N=2\) super-Virasoro representations”; arXiv: hep-th/9810059.

  7. W. Lerche, C. Vafa, and N. P. Warner, “Chiral rings in \(N=2\) superconformal theories,” Nucl. Phys. B, 324, 427–474 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Schwimmer and N. Seiberg, “Comments on the \(N=2,3,4\) superconformal algebras in two dimensions,” Phys. Lett. B, 184, 191–196 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. B. Zamolodchikov and V. A. Fateev, “Disorder fields in two-dimensional conformal quantum field theory and \(N=2\) extended supersymmetry,” Sov. Phys. JETP, 63, 913–919 (1986).

    Google Scholar 

  10. P. Di Vecchia, J. L. Petersen, and M. Yu, “On the unitary representations of \(N=2\) superconformal algebra,” Phys. Lett. B, 172, 211–215 (1986); P. Di Vecchia, J. L. Petersen, M. Yu, and H. B. Zheng, “Explicit construction of the \(N=2\) superconformal algebra,” Phys. Lett. B, 174, 280–284 (1986); S. Nam, “The Kac formula for the \(N=1\) and \(N=2\) super-conformal algebras,” Phys. Lett. B, 172, 323–327 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. L. Feigin, A. M. Semikhatov, and I. Yu. Tipunin, “Equivalence between chain categories of representations of affine \(sl(2)\) and \(N=2\) superconformal algebras,” J. Math. Phys., 39, 3865–3905 (1998); arXiv: hep-th/9701043.

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Krawitz, “FJRW rings and Landau–Ginsburg mirror symmetry”; arXiv: 0906.0796.

  13. P. Berglund and T. Hübsch, “A generalized construction of mirror manifolds,” Nucl. Phys. B, 393, 377–391 (1993); arXiv: hep-th/9201014.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Belavin and B. Eremin, “On the equivalence of Batyrev and BHK mirror symmetry constructions,” Nucl. Phys. B, 961, 115271, 10 pp. (2020); arXiv: 2010.07687.

    Article  MathSciNet  Google Scholar 

  15. L. Dixon, J. H. Harvey, C. Vafa, and E. Witten, “Strings on orbifolds,” Nucl. Phys. B, 261, 678–686 (1985); “Strings on orbifolds (II),” 274, 285–314 (1986).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The work of S. Parkhomenko (sections 1–3) was supported by the Russian Science Foundation grant 18-12-00439. The results of A. Belavin (sections 4–6) were obtained with the support of the program no. 0029-2019-0004 “Quantum field theory” of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belavin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 59–81 https://doi.org/10.4213/tmf10145.

To the memory of William Everett

Appendix

Here, we derive the rules for modular transformations of characters in Eqs. (73) and (75) and shift relations (77) using the spectral flow and modular properties of the minimal model characters.

We first examine the modular properties of characters of an individual minimal model. Namely, for each pair \(l\), \(t\) labeling a representation of the \(N=2\) superconformal minimal model and for each pair \(n,p\in \frac{1}{2}\mathbb{Z}\), we introduce the character

$$ NS^+_{l,t+n,p}\equiv e^{-i 2\pi\epsilon}\operatorname{Tr}_{\mathcal{H}_{l,t+n}}\biggl\{\exp{\biggl[i 2\pi \biggl(L_0-\frac{c}{24}\biggr)\tau+i 2\pi J_0(z+p)\biggr]}\biggr\}.$$
(90)
In this expression, the trace is taken using the twisted representation of \(\mathcal{H}_{l,t+n}\) with the insertion of the operator \(\exp{[i 2\pi (z+p)J_0]}\). The space \(\mathcal{H}_{l,t+n}\) consists of vectors of the space \(\mathcal{H}_{l,t}\) on which the \(n\)-twisted \(N=2\) Virasoro superalgebra is acting. Thus, for a half-integer \(n\), we obtain the character of a representation in the R sector. It is also easy to see that for the NS-sector characters, half-integer \(p\) generate insertions of the operator \((-1)^{F}\) up to a common phase factor arising from the charge of the corresponding highest-weight vector.

Using (33) and (38), we obtain

$$ NS^+_{l,t+n,p}\biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{cz^2}{6\tau}\biggr)= \exp{\biggl[i 2\pi\frac{c}{3}pn\biggr]} S^{l',t'}_{l,t}NS^+_{l',t'+p,-n}(\tau,z,\epsilon)$$
(91)
and
$$\begin{aligned} \, NS^+_{l,t+n,p}(\tau+1,z,\epsilon) ={}&\exp{\biggl[i 2\pi \biggl(\Delta_{l,t}-\frac{c}{24}\biggr)\biggr]}\times {} \nonumber \\ &\times \exp{\biggl[-i\pi\biggl(\frac{c}{3}n(n+1)+Q_{l,t}\biggr)\biggr]} NS^+_{l,t+n,p+n+1/2}(\tau,z,\epsilon). \end{aligned}$$
(92)

From definitions (90) and (13), we obtain the shift relations for integer \(q\):

$$ NS^+_{l,t+n,p+q}=\exp{\biggl[i 2\pi q\biggl(\frac{c}{3}n+Q_{l,t}\biggr)\biggr]} NS^+_{l,t+n,p}, \qquad q\in \mathbb{Z}.$$
(93)
For the characters with integer \(n,p\), we introduce the special notation
$$\begin{aligned} \, &NS^-_{l,t+n,p}\equiv e^{-i 2\pi\epsilon}\operatorname{Tr}_{\mathcal{H}_{l,t+n}}\biggl\{(-1)^{F}\exp{\biggl[i 2\pi \biggl(L_0-\frac{c}{24}\biggr)\tau+i 2\pi J_0(z+p)\biggr]}\biggr\}, \\ &R^+_{l,t+n,p}\equiv e^{-i 2\pi\epsilon}\operatorname{Tr}_{\mathcal{H}_{l,t+n+1/2}}\biggl\{\exp{\biggl[i 2\pi \biggl(L_0-\frac{c}{24}\biggr)\tau+i 2\pi J_0(z+p)\biggr]}\biggr\}, \\ &R^-_{l,t+n,p} \equiv e^{-i 2\pi\epsilon}\operatorname{Tr}_{\mathcal{H}_{l,t+n+1/2}}\biggl\{(-1)^{F}\exp{\biggl[i 2\pi \biggl(L_0-\frac{c}{24}\biggr)\tau+i 2\pi J_0(z+p)\biggr]}\biggr\}. \end{aligned}$$
(94)
Then we can write
$$\begin{aligned} \, &NS^-_{l,t+n,p}=\exp{\biggl[-i \pi \biggl(\frac{c}{3}n+Q_{l,t}\biggr)\biggr]}NS^+_{l,t+n,p+1/2}, \\ &R^\pm_{l,t+n,p}=NS^\pm_{l,t+n+1/2,p}, \end{aligned}$$
(95)
and obtain shift relations for the R-sector characters
$$ R^\pm_{l,t+n,p+q}=\exp{\biggl[i 2\pi q\biggl(\frac{c}{3}\biggl(n+\frac{1}{2}\biggr)+Q_{l,t}\biggr)\biggr]} R^\pm_{l,t+n,p}, \qquad q\in \mathbb{Z}.$$
(96)

Based on rules (91), (92) and relation (93), we can conclude that for integer \(n\) and \(p\), characters (90) and (94) transform as

$$\begin{aligned} \, & NS^+_{l,t+n,p}\biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{cz^2}{6\tau}\biggr)= \exp{\biggl[i 2\pi\frac{c}{3}pn\biggr]}S^{l',t'}_{l,t}NS^+_{l',t'+p,-n}(\tau,z,\epsilon), \\ & NS^-_{l,t+n,p}\biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{cz^2}{6\tau}\biggr)= \exp{\biggl[i 2\pi\frac{c}{3}np\biggr]}S^{l',t'+1/2}_{l,t}R^+_{l',t'+p,-n}(\tau,z,\epsilon), \\ & R^+_{l,t+n,p}\biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{cz^2}{6\tau}\biggr)= \exp{\biggl[i 2\pi\frac{c}{3}np\biggr]}S^{l',t'}_{l,t+1/2}NS^-_{l',t'+p,-n}(\tau,z,\epsilon), \\ & R^-_{l,t+n,p}\biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{cz^2}{6\tau}\biggr)= -i\exp{\biggl[i 2\pi\frac{c}{3}np\biggr]}S^{l',t'+1/2}_{l,t+1/2}R^-_{l',t'+p,-n}(\tau,z,\epsilon) \end{aligned}$$
(97)
and
$$\begin{aligned} \, NS^+_{l,t+n,p}(\tau+1,z,\epsilon)&= \exp{\biggl[i 2\pi\biggl(\Delta_{l,t}-\frac{c}{6}n^2-\frac{c}{24}\biggr)\biggr]}NS^-_{l,t+n,p+n}(\tau,z,\epsilon), \\ NS^-_{l,t+n,p}(\tau+1,z,\epsilon)&= \exp{\biggl[i 2\pi\biggl(\Delta_{l,t}-\frac{c}{6}n^2-\frac{c}{24}\biggr)\biggr]}NS^+_{l,t+n,p+n}(\tau,z,\epsilon), \\ R^+_{l,t+n,p}(\tau+1,z,\epsilon)&= \exp{\biggl[i 2\pi\biggl(\Delta_{l,t}-\frac{c}{6}n^2+\frac{1}{2}Q_{l,t}\biggr)\biggr]}R^+_{l,t+n,p+n}(\tau,z,\epsilon), \\ R^-_{l,t+n,p}(\tau+1,z,\epsilon)&= \exp{\biggl[i 2\pi\biggl(\Delta_{l,t}-\frac{c}{6}n^2+\frac{1}{2}Q_{l,t}\biggr)\biggr]}R^-_{l,t+n,p+n}(\tau,z,\epsilon). \end{aligned}$$
(98)

The modular properties and shift relations for the products of minimal-model characters in (71), arising in the construction of the partition function of the orbifold by group (65), now follow by a direct generalization of the corresponding expressions for the minimal model. The shift relations take the form

$$\begin{aligned} \, &NS^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},(p+s)\vec{\alpha}+(q+r)\vec{\beta}}=\exp{[i 2\pi s(\langle\vec{\alpha},n\vec{\alpha}+m\vec{\beta}\rangle+Q_{\vec{l},\vec{t}})]}\exp{[i 2\pi r(\langle\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle+Q^{\beta}_{\vec{l},\vec{t}})]}\times{} \\ &\hphantom{NS^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},(p+s)\vec{\alpha}+(q+r)\vec{\beta}}{}=} \times NS^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}}, \\ &R^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},(p+s)\vec{\alpha}+(q+r)\vec{\beta}} =\exp{[i 2\pi s(\langle\vec{\alpha},(n+1/2)\vec{\alpha}+m\vec{\beta}\rangle +Q_{\vec{l},\vec{t}})]} \times {} \\ &\hphantom{R^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},(p+s)\vec{\alpha}+(q+r)\vec{\beta}}={}}\times \exp{[i 2\pi r(\langle\vec{\beta},(n+1/2)\vec{\alpha}+m\vec{\beta}\rangle +Q^{\beta}_{\vec{l},\vec{t}})]} R^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}}, \end{aligned}$$
(99)
where
$$ \langle\vec{\mu},\vec{\nu}\rangle\equiv\sum_i\frac{c_i}{3}\mu_i\nu_i Q^{\beta}_{\vec{l},\vec{t}}\equiv\sum_i\beta_iQ_{l_i,t_i}.$$
(100)
The generalizations of (97) and (98) are given by the expressions
$$\begin{aligned} \, &NS^+_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}} \biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{c_{\mathrm{tot}}z^{2}}{6\tau}\biggr)={} \\ &=\exp{[i 2\pi\langle p\vec{\alpha}+q\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle]} S^{\vec{l}',\vec{t}'}_{\vec{l},\vec{t}}NS^+_{\vec{l}',\vec{t}'+p\vec{\alpha}+q\vec{\beta},-n\vec{\alpha}-m\vec{\beta}}(\tau,z,\epsilon), \\ &NS^-_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}} \biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{c_{\mathrm{tot}}z^{2}}{6\tau}\biggr)={} \\ &=\exp{[i 2\pi\langle p\vec{\alpha}+q\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle]} S^{\vec{l}',\vec{t}'+\vec{\alpha}/2}_{\vec{l},\vec{t}}R^+_{\vec{l}',\vec{t}'+p\vec{\alpha}+q\vec{\beta},-n\vec{\alpha}-m\vec{\beta}}(\tau,z,\epsilon), \\ &R^+_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}} \biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{c_{\mathrm{tot}}z^{2}}{6\tau}\biggr)={} \\ &=\exp{[i 2\pi\langle p\vec{\alpha}+q\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle]} S^{\vec{l}',\vec{t}'}_{\vec{l},\vec{t}+\vec{\alpha}/2}NS^-_{\vec{l}',\vec{t}'+p\vec{\alpha}+q\vec{\beta},-n\vec{\alpha}-m\vec{\beta}}(\tau,z,\epsilon), \\ &R^-_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}} \biggl(-\frac{1}{\tau},\frac{z}{\tau},\epsilon+\frac{c_{\mathrm{tot}}z^{2}}{6\tau}\biggr)={} \\ &=-i\exp{[i 2\pi\langle p\vec{\alpha}+q\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle]} S^{\vec{l}',\vec{t}'+\vec{\alpha}/2}_{\vec{l},\vec{t}+\vec{\alpha}/2} R^-_{\vec{l}',\vec{t}'+p\vec{\alpha}+q\vec{\beta},-n\vec{\alpha}-m\vec{\beta}}(\tau,z,\epsilon) \end{aligned}$$
(101)
and
$$\begin{aligned} \, &NS^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}}(\tau+1,z,\epsilon)= \\ &=\exp{\biggl[i 2\pi\biggl(\Delta_{\vec{l},\vec{t}}-\frac{c_{\mathrm{tot}}}{24}\biggr)\biggr]}\exp{[-i \pi|n\vec{\alpha}+m\vec{\beta}|^{2}]} NS^{\mp}_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},(p+n)\vec{\alpha}+(m+q)\vec{\beta}}(\tau,z,\epsilon), \\ &R^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},p\vec{\alpha}+q\vec{\beta}}(\tau+1,z,\epsilon)= \\ &=\exp{\biggl[i 2\pi\biggl(\Delta_{\vec{l},\vec{t}}+\frac{1}{2}Q_{\vec{l},\vec{t}}\biggr)\biggr]} \exp{[-i \pi|n\vec{\alpha}+m\vec{\beta}|^{2}]} R^\pm_{\vec{l},\vec{t}+n\vec{\alpha}+m\vec{\beta},(p+n)\vec{\alpha}+(m+q)\vec{\beta}}(\tau,z,\epsilon). \end{aligned}$$
(102)
In our case,
$$\begin{aligned} \, &\langle p\vec{\alpha}+q\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle =3pn+6(pm+qn)+\frac{102}{5}qm\Rightarrow {} \\ &\hphantom{\langle p\vec{\alpha}+q\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle {}}\Rightarrow \exp{[i 2\pi\langle p\vec{\alpha}+q\vec{\beta},n\vec{\alpha}+m\vec{\beta}\rangle]}=\exp{\biggl(i 4\pi\frac{qm}{5}\biggr)}, \\ &|n\vec{\alpha}+m\vec{\beta}|^{2}=3n^{2}+12nm+\frac{102}{5}m^{2}\Rightarrow {} \\ &\hphantom{|n\vec{\alpha}+m\vec{\beta}|^{2}{}}\Rightarrow \exp{[-i \pi|n\vec{\alpha}+m\vec{\beta}|^{2}]}=(-1)^{n}\exp{\biggl(-i 2\pi\frac{m^{2}}{5}\biggr)}. \end{aligned}$$
(103)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belavin, A.A., Parkhomenko, S.E. Explicit construction of \(N=2\) superconformal orbifolds. Theor Math Phys 209, 1367–1386 (2021). https://doi.org/10.1134/S0040577921100044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921100044

Keywords

Navigation