Skip to main content
Log in

Explicit breather solution of the nonlinear Schrödinger equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a one-line closed-form expression for the three-parameter breather of the nonlinear Schrödinger equation. This provides an analytic proof of the time period doubling observed in experiments. The experimental check that some pulses generated in optical fibers are indeed such generalized breathers will be drastically simplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The scaling invariance \((x,t,A)\to(kx,k^2t,kA)\) of the NLS equation reduces this number by one.

  2. We never use the ambiguous term “periodic” for elliptic solutions, but always either “doubly periodic,” alias “elliptic” (example: Jacobi \(\operatorname{dn}\), Weierstrass \(\wp\)), or “quasi-doubly periodic,” alias “quasielliptic,” alias “elliptic of the second kind” in Hermite’s terminology [11, Vol. 1, p. 227; Vol. 2, p. 506] (example: the solution \(\mathrm{H}(t,a)\) of Lamé equation (10)).

  3. To convert to the notation of Jacobi, see [21], § 18.9.11 and 18.10.8.

  4. Under the addition of any of the two periods, a quasielliptic function is multiplied by a constant factor, the multiplier.

References

  1. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett., 3, 307–310 (1966).

    ADS  Google Scholar 

  2. V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid,” J. Appl. Mech. Tech. Phys., 9, 190–194 (1968).

    Article  ADS  Google Scholar 

  3. N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A, 373, 675–678 (2009).

    Article  ADS  Google Scholar 

  4. V. V. Konotop and M. Salerno, “Modulational instability in Bose–Einstein condensates in optical lattices,” Phys. Rev. A, 65, 021602, 4 pp. (2002); arXiv: cond-mat/0106228.

    Article  ADS  Google Scholar 

  5. P. J. Everitt, M. A. Sooriyabandara, M. Guasoni et al., “Observation of a modulational instability in Bose–Einstein condensates,” Phys. Rev. A, 96, 041601, 5 pp. (2017); arXiv: 1703.07502.

    Article  ADS  Google Scholar 

  6. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  7. D.-I. Yeom and B. J. Eggleton, “Rogue waves surface in light,” Nature, 450, 953–954 (2007).

    Article  ADS  Google Scholar 

  8. E. A. Kuznetsov, “On solitons in parametrically unstable plasma,” Sov. Phys. Dokl., 22, 507–508 (1977).

    ADS  Google Scholar 

  9. N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation,” Theoret. and Math. Phys., 69, 1089–1093 (1986).

    Article  ADS  Google Scholar 

  10. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schrödinger equation,” Theoret. and Math. Phys., 72, 809–818 (1987).

    Article  ADS  Google Scholar 

  11. G. H. Halphen, Traité des fonctions elliptiques et de leurs applications, Vol. 1: Théorie des fonctions elliptiques et de leurs développements en série, Gauthier-Villars, Paris (1886); Vol. 2: Applications à la mécanique, à la physique, à la géodésie, à la géométrie et au calcul intégral (1888); Vol. 3: Fragments (1891).

    MATH  Google Scholar 

  12. G. Vanderhaegen, P. Szriftgiser, C. Naveau et al., “Observation of doubly periodic solutions of the nonlinear Schrödinger equation in optical fibers,” Optics Lett., 45, 3757–3760 (2020).

    Article  ADS  Google Scholar 

  13. M. Conforti, A. Mussot, A. Kudlinski, S. Trillo, and N. Akhmediev, “Doubly periodic solutions of the focusing nonlinear Schrödinger equation: recurrence, period doubling, and amplification outside the conventional modulation-instability band,” Phys. Rev. A, 101, 023843, 11 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Akhmediev and A. Ankiewicz, “First-order exact solutions of the nonlinear Schrödinger equation in the normal-dispersion regime,” Phys. Rev. A, 47, 3213–3221 (1993).

    Article  ADS  Google Scholar 

  15. D. Mihalache and N. C. Panoiu, “Exact solutions of nonlinear Schrödinger equation for positive group velocity dispersion,” J. Math. Phys., 33, 2323–2328 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Mihalache and N. C. Panoiu, “Exact solutions of the nonlinear Schrödinger equation for the normal-dispersion regime in optical fibers,” Phys. Rev. A, 45, 6730–6734 (1992).

    Article  ADS  Google Scholar 

  17. K. W. Chow, “A class of doubly periodic waves for nonlinear evolution equations,” Wave Motion, 35, 71–90 (2002).

    Article  MathSciNet  Google Scholar 

  18. D. V. Chudnovsky, G. V. Chudnovsky, and M. Tabor, “Painlevé property and multicomponent isospectral deformation equations,” Phys. Lett. A, 97, 268–274 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Conte and M. Musette, The Painlevé Handbook (Mathematical Physics Studies), Springer, Cham (2020).

    Book  Google Scholar 

  20. G.-H. Halphen, “Mémoire sur la réduction des équations différentielles linéaires aux formes intégrables,” Mém. Acad. Sci. Inst. France, 28, 1–301 (1884).

    Google Scholar 

  21. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Appl. Math. Ser., Vol. 55), Dover, New York (1972).

    Google Scholar 

  22. L. Kiepert, “Auflösung der Transformationsgleichungen und Division der elliptischen Functionen,” J. Reine Angew. Math., 1873, 34–44 (1873).

    Article  MathSciNet  Google Scholar 

  23. K. W. Chow, R. Conte, and N. Xu, “Analytic doubly periodic wave patterns for the integrable discrete nonlinear Schrödinger (Ablowitz–Ladik) model,” Phys. Lett. A, 349, 422–429 (2006); arXiv: nlin/0509005.

    Article  ADS  Google Scholar 

  24. T. Kawata and H. Inoue, “Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions,” J. Phys. Soc. Japan, 44, 1722–1729 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  25. Y.-C. Ma, “The perturbed plane-wave solutions of the cubic Schrödinger equation,” Stud. Appl. Math., 60, 43–58 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. A. Alejo, L. Fanelli, and C. Muñoz, “The Akhmediev breather is unstable,” São Paulo J. Math. Sci., 13, 391–401 (2019).

    Article  MathSciNet  Google Scholar 

  27. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Austral. Math. Soc. Ser. B, 25, 16–43 (1983).

    Article  MathSciNet  Google Scholar 

  28. V. E. Zakharov and A. B. Shabat, “Interaction betweem solitons in a stable medium,” Soviet Phys. JETP, 37, 823–828 (1973).

    ADS  Google Scholar 

  29. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media,” JETP, 34, 62–69 (1972).

    ADS  MathSciNet  Google Scholar 

  30. K. W. Chow, “Solitary waves on a continuous background,” J. Phys. Soc. Japan, 64, 1524–1528 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is pleased to thank Micheline Musette for a critical reading of the manuscript.

Funding

This work was initiated at the Centre International de Rencontres Mathématiques, Marseille (grant 2311, year 2019), whose hospitality is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Conte.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 46–58 https://doi.org/10.4213/tmf10095.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, R. Explicit breather solution of the nonlinear Schrödinger equation. Theor Math Phys 209, 1357–1366 (2021). https://doi.org/10.1134/S0040577921100032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921100032

Keywords

Navigation