Skip to main content
Log in

\(\ell\)-weights and factorization of transfer operators

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the \(\ell\)-weights of the evaluation and \(q\)-oscillator representations of the quantum loop algebras \(\mathrm U_q(\mathcal L(\mathfrak{sl}_{l+1}))\) for \(l=1\) and \(l=2\) and prove factorization relations for the transfer operators of the associated quantum integrable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the terminology used here, we refer the reader to [14] and Sec. 5 below.

  2. We let \(\mathbb E_{ab}\) denote the usual matrix units.

  3. For the explanation of the notation, see, e.g., [52].

  4. In this paper, we always assume that the representations used are in the category \(\mathcal O\).

  5. An element \(x\in\mathrm U_q(\mathcal L(\mathfrak g))\) is called group-like if \(\Delta(x)=x\otimes x\).

  6. One can also use the tensor product \(\psi_{\eta_1}\otimes_\Delta\dotsb\otimes_\Delta\psi_{\eta_n}\) as \(\psi\). However, we do not consider such a generalization in this paper.

  7. Here and hereafter, we treat any \(\mathrm U_q(\mathcal L(\mathfrak{sl}_{l+1}))\)-module as the corresponding \(\mathrm U_q(\mathcal L(\mathfrak b_+))\)-module.

  8. We set \(\mathbf n'=(n_{21})\). It may seem that we are using unnecessarily cumbersome notation. This is justified by the fact that we use the same notation for all values of \(l\).

  9. We now set \(\mathbf n'=(n_{22},n_{31},n_{32})\).

References

  1. V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz,” Commun. Math. Phys., 177, 381–398 (1996); arXiv:hep-th/9412229.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, “Integrable structure of conformal field theory II. Q-operator and DDV equation,” Commun. Math. Phys., 190, 247–278 (1997); arXiv:hep-th/9604044.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov, “Integrable structure of conformal field theory III. The Yang–Baxter relation,” Commun. Math. Phys., 200, 297–324 (1999); arXiv:hep-th/9805008.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. M. Khoroshkin and V. N. Tolstoy, “The uniqueness theorem for the universal \(R\)-matrix,” Lett. Math. Phys., 24, 231–244 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S. Levendorskii, Ya. Soibelman, and V. Stukopin, “The quantum Weyl group and the universal quantum \(R\)-matrix for affine Lie algebra \(A_1^{(1)}\),” Lett. Math. Phys., 27, 253–264 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Y.-Z. Zhang and M. D. Gould, “Quantum affine algebras and universal \(R\)-matrix with spectral parameter,” Lett. Math. Phys., 31, 101–110 (1994); arXiv:hep-th/9307007.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. J. Bracken, M. D. Gould, Y.-Z. Zhang, and G. W. Delius, “Infinite families of gauge-equivalent \(R\)-matrices and gradations of quantized affine algebras,” Internat. J. Modern Phys. B, 8, 3679–3691 (1994); arXiv:hep-th/9310183.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. J. Bracken, M. D. Gould, and Y.-Z. Zhang, “Quantised affine algebras and parameter-dependent \(R\)-matrices,” Bull. Austral. Math. Soc., 51, 177–194 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Exercises with the universal \(R\)-matrix,” J. Phys. A: Math. Theor., 43, 415208, 35 pp. (2010); arXiv:1004.5342.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “On the universal \(R\)-matrix for the Izergin–Korepin model,” J. Phys. A: Math. Theor., 44, 355202, 25 pp. (2011); arXiv:1104.5696.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. V. Bazhanov and Z. Tsuboi, “Baxter’s Q-operators for supersymmetric spin chains,” Nucl. Phys. B, 805, 451–516 (2008); arXiv:0805.4274.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. Boos, F. Gohmann, A. Klümper, Kh. Nirov, and A. V. Razumov, “Universal integrability objects,” Theoret. and Math. Phys., 174, 21–39 (2013); arXiv:1205.4399.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. V. Razumov, “Monodromy operators for higher rank,” J. Phys. A: Math. Theor., 46, 385201, 24 pp. (2013); arXiv:1211.3590.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Universal \({R}\)-matrix and functional relations,” Rev. Math. Phys., 26, 1430005, 66 pp. (2014); arXiv:1205.1631.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. V. Bazhanov, A. N. Hibberd, and S. M. Khoroshkin, “Integrable structure of \(\mathcal W_3\) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory,” Nucl. Phys. B, 622, 475–574 (2002); arXiv:hep-th/0105177.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. T. Kojima, “Baxter’s \(Q\)-operator for the \(W\)-algebra \(W_N\),” J. Phys. A: Math. Theor., 41, 355206, 16 pp. (2008); arXiv:0803.3505.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Quantum groups and functional relations for higher rank,” J. Phys. A: Math. Theor., 47, 275201, 47 pp. (2014); arXiv:1312.2484.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kh. S. Nirov and A. V. Razumov, “Quantum groups and functional relations for lower rank,” J. Geom. Phys., 112, 1–28 (2017); arXiv:1412.7342.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Reduced qKZ equation: general case,” J. Phys. A: Math. Gen., 53, 015202, 35 pp. (2020); arXiv:1905.06014.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. V. Razumov, “Reduced qKZ equation and genuine qKZ equation,” J. Phys. A: Math. Theor., 53, 405204, 32 pp. (2020); arXiv:2004.02624.

    Article  MathSciNet  Google Scholar 

  21. N. Yu. Reshetikhin, “The functional equation method in the theory of exactly soluble quantum systems,” Sov. Phys. JETP, 57, 691–696 (1983).

    MathSciNet  Google Scholar 

  22. N. Yu. Reshetikhin, “A method of functional equations in the theory of exactly solvable quantum systems,” Lett. Math. Phys., 7, 205–213 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  23. P. P. Kulish and N. Yu. Reshetikhin, “\(GL_3\)-invariant solutions of the Yang–Baxter equation and associated quantum systems,” J. Math. Sci., 34, 1948–1971 (1986).

    Article  Google Scholar 

  24. V. V. Bazhanov and N. Reshetikhin, “Restricted solid-on-solid models connected with simply laced algebras and conformal field theory,” J. Phys. A: Math. Gen., 23, 1477–1492 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. Klümper and P. A. Pearce, “Conformal weights of RSOS lattice models and their fusion hierarchies,” Phys. A, 183, 304–350 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Kuniba, T. Nakanishi, and J. Suzuki, “Functional relations in solvable lattice models. I. Functional relations and representation theory,” Internat. J. Modern Phys. A, 9, 5215–5266 (1994); arXiv:hep-th/9309137.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Kuniba, T. Nakanishi, and J. Suzuki, “\(T\)-systems and \(Y\)-systems in integrable systems,” J. Phys A: Math. Theor., 44, 103001, 146 pp. (2011); arXiv:1010.1344.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kh. S. Nirov and A. V. Razumov, “Quantum groups and functional relations for lower rank,” J. Geom. Phys., 112, 1–28 (2017); arXiv:1412.7342.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E. Frenkel and D. Hernandez, “Baxter’s relations and spectra of quantum integrable models,” Duke Math. J., 164, 2407–2460 (2015); arXiv:1308.3444.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Hernandez and M. Jimbo, “Asymptotic representations and Drinfeld rational fractions,” Compos. Math., 148, 1593–1623 (2012); arXiv:1104.1891.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Jimbo, “A \(q\)-analogue of \(\mathrm U(\mathfrak{gl}(N+1))\), Hecke algebra, and the Yang–Baxter equation,” Lett. Math. Phys., 11, 247–252 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. N. Leznov and M. V. Saveliev, “A parametrization of compact groups,” Funct. Anal. Appl., 8, 347–348 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  33. R. M. Kaufman, “Distribution of \(\{\sqrt p\}\),” Math. Notes, 26, 739–743 (1979).

    Article  ADS  MATH  Google Scholar 

  34. V. N. Tolstoy, “Extremal projections for contragredient Lie algebras and superalgebras of finite growth,” Russian Math. Surveys, 44, 257–258 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  35. Kh. S. Nirov and A. V. Razumov, “Quantum groups, Verma modules and \(q\)-oscillators: general linear case,” J. Phys. A: Math. Theor., 50, 305201, 19 pp. (2017); arXiv:1610.02901.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Yamane, “A Poincaré–Birkhoff–Witt theorem for quantized universal enveloping algebras of type \(A_N\),” Publ. Res. Inst. Math. Sci. Kyoto Univ., 25, 503–520 (1989).

    Article  MATH  Google Scholar 

  37. J.-P. Serre, Complex Semisimple Lie Algebras, Springer Monographs in Mathematics, Springer, Berlin (2001).

    Book  MATH  Google Scholar 

  38. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer, New York (1978).

    MATH  Google Scholar 

  39. V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge (1990).

    Book  MATH  Google Scholar 

  40. V. N. Tolstoy and S. M. Khoroshkin, “The universal \(R\)-matrix for quantum untwisted affine Lie algebras,” Funct. Anal. Appl., 26, 69–71 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  41. S. M. Khoroshkin and V. N. Tolstoy, “On Drinfeld’s realization of quantum affine algebras,” J. Geom. Phys., 11, 445–452 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. Khoroshkin and V. N. Tolstoy, “Twisting of quantum (super)algebras. Connection of Drinfeld’s and Cartan–Weyl realizations for quantum affine algebras,” arXiv:hep-th/9404036.

  43. J. Beck, “Convex bases of PBW type for quantum affine algebras,” Commun. Math. Phys., 165, 193–199 (1994); arXiv:hep-th/9407003.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. I. Damiani, “La \(R\)-matrice pour les algèbres quantiques de type affine non tordu,” Ann. Sci. École Norm. Sup., 31, 493–523 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  45. V. G. Drinfel’d, “Quantum groups,” in: Proceedings of the International Congress of Mathematicians (Berkeley, CA, USA, August 3–11, 1986), Vol. 1 (A. M. Gleason, ed.), AMS, Providence, RI (1986), pp. 798–820.

    Google Scholar 

  46. V. G. Drinfeld, “A new realization of Yangians and of quantum affine algebras,” Dokl. Math., 36, 212–216 (1988).

    MathSciNet  Google Scholar 

  47. P. D. Lax, Linear Algebra and Its Applications, Wiley, Hoboken, NJ (2007).

    MATH  Google Scholar 

  48. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Oscillator versus prefundamental representations,” J. Math. Phys., 57, 111702, 23 pp. (2016); arXiv:1512.04446.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. H. Boos, F. Göhmann, A. Klümper, Kh. S. Nirov, and A. V. Razumov, “Oscillator versus prefundamental representations II. Arbitrary higher ranks,” J. Math. Phys., 58, 093504, 23 pp. (2017); arXiv:1701.02627.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. E. Frenkel and N. Reshetikhin, “The \(q\)-characters of representations of quantum affine algebras and deformations of \(\mathcal{W}\)-algebras,” in: Recent Developments in Quantum Affine Algebras and Related Topics (North Carolina State University, May 21–24, 1998), Contemporary Mathematics, Vol. 248 (N. Jing and K. C. Misra, eds.), AMS, Providence, RI (1999), pp. 163–205; arXiv:math/9810055 [math.QA].

    Article  MathSciNet  MATH  Google Scholar 

  51. P. I. Etingof, I. B. Frenkel, and A. A. Kirillov, Jr., Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, Mathematical Surveys and Monographs, Vol. 58, AMS, Providence, RI (1998).

    Book  MATH  Google Scholar 

  52. Kh. S. Nirov and A. V. Razumov, “Vertex models and spin chains in formulas and pictures,” SIGMA, 15, 068, 67 pp. (2019); arXiv:1811.09401.

    MathSciNet  MATH  Google Scholar 

  53. T. Tanisaki, “Killing forms, Harish–Chandra homomorphisms and universal \(R\)-matrices for quantum algebras,” in: Infinite Analysis (Research Institute for Mathematical Sciences, Kyoto University, June–August, 1991), Advanced Series in Mathematical Physics, Vol. 16 (A. Tsuchiya, T. Eguchi, and M. Jimbo, eds.), World Sci., Singapore (1992), pp. 941–962.

    MATH  Google Scholar 

  54. V. Chari and A. Pressley, A Quide to Quantum Groups, Cambridge Univ. Press, Cambridge (1994).

    MATH  Google Scholar 

  55. R. A. Usmani, “Inversion of a tridiagonal Jacobi matrix,” Linear Algebra Appl., 212/213, 413–414 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Rosso, “An analogue of B.G.G. resolution for the quantum \({SL(N)}\)-group,” in: Symplectic Geometry and Mathematical Physics (Aix-en-Provence, France, June 11–15, 1990), Progress in Mathematics, Vol. 99 (P. Donato, C. Duval, J. Elhadad, and G. M. Tynman, eds.), Birkhäuser, Boston (1991), pp. 422–432.

    Article  MathSciNet  MATH  Google Scholar 

  57. F. Malikov, “Quantum groups: singular vectors and BGG resolution,” Internat. J. Modern Phys. A, 07, 623–643 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. I. Heckenberger and S. Kolb, “On the Berstein–Gelfand–Gelfand resolution for Kac–Moody algebras and quantized enveloping algebras,” Transform. Groups, 12, 647–655 (2007); arXiv:math/0605460 [math.QA].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to H. Boos, F. Göhmann, A. Klümper, and Kh. S. Nirov, in collaboration with whom some important results used in this paper were previously obtained, for the useful discussions.

Funding

This work was supported in part by the RFBR grant no. 20-51-12005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Razumov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 310-341 https://doi.org/10.4213/tmf10082.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, A.V. \(\ell\)-weights and factorization of transfer operators. Theor Math Phys 208, 1116–1143 (2021). https://doi.org/10.1134/S0040577921080092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921080092

Keywords

Navigation