Skip to main content
Log in

Sigma models as Gross–Neveu models

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We review the correspondence between integrable sigma models with complex homogeneous target spaces and the chiral bosonic (and possibly mixed bosonic/fermionic) Gross–Neveu models. Mathematically, these are models with quiver variety phase spaces, which reduce to more conventional sigma models in special cases. We discuss the geometry of the models as well as their trigonometric and elliptic deformations, the Ricci flow, and the inclusion of fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. The fact that the \(B\) field is topological is characteristic of symmetric space models. In general, it is a nonclosed 2-form.

  2. Integrability-preserving deformations of sigma models have a long history, cf. [22]–[26].

  3. The \(r\)-matrix used in that paper is related to (3.3) by a similarity transformation. As a consequence of this, an additional coordinate transformation was needed in [2] in order to satisfy the RG equation, which is not necessary in the present formulation.

  4. The relation between integrability and renormalizability has been discussed throughout the years, cf. [30]–[37].

References

  1. Dmitri V. Bykov, “Flag manifold sigma models and nilpotent orbits,” Proc. Steklov Inst. Math., 309, 78–86 (2020); arXiv:1911.07768.

    Article  MathSciNet  Google Scholar 

  2. D. Bykov, “Quantum flag manifold \(\sigma\)-models and Hermitian Ricci flow,” arXiv:2006.14124.

  3. D. Bykov, “The \(\mathbb{CP}^{n-1}\)-model with fermions: a new look,” to appear in Adv. Theor. Math. Phys.; arXiv:2009.04608.

  4. I. Affleck, D. Bykov, and K. Wamer, “Flag manifold sigma models: spin chains and integrable theories,” arXiv:2101.11638.

  5. H. Nakajima, “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras,” Duke Math. J., 76, 365–416 (1994).

    Article  MathSciNet  Google Scholar 

  6. E. Abdalla, M. C. B. Abdalla, and K. D. Rothe, Nonperturbative Methods in Two Dimensional Quantum Field Theory, World Sci., Singapore (1991).

    Book  Google Scholar 

  7. D. J. Gross and A. Neveu, “Dynamical symmetry breaking in asymptotically free field theories,” Phys. Rev. D, 10, 3235–3253 (1974).

    Article  ADS  Google Scholar 

  8. E. Witten, “Chiral symmetry, the \(1/n\) expansion, and the \(\mathrm{SU}(N)\) thirring model,” Nucl. Phys. B, 145, 110–118 (1978).

    Article  ADS  Google Scholar 

  9. N. A. Nekrasov, “Lectures on curved beta-gamma systems, pure spinors, and anomalies,” arXiv:hep-th/0511008.

  10. B. Fu, “A survey on symplectic singularities and symplectic resolutions,” Ann. Math. Blaise Pascal, 13, 209–236 (2006).

    Article  MathSciNet  Google Scholar 

  11. P. Breitenlohner and D. Maison, “On nonlinear \(\sigma\)-models arising in (super-)gravity,” Commun. Math. Phys., 209, 785–810 (2000); arXiv:gr-qc/9806002.

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Breitenlohner, D. Maison, and G. W. Gibbons, “\(4\)-dimensional black holes from Kaluza–Klein theories,” Commun. Math. Phys., 120, 295–333 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  13. O. Brodbeck and M. Zagermann, “Dimensionally reduced gravity, Hermitian symmetric spaces and the Ashtekar variables,” Class. Quant. Grav., 17, 2749–2763 (2000); arXiv:gr-qc/9911118.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Arvanitoyeorgos, “New invariant Einstein metrics on generalized flag manifolds,” Trans. Amer. Math. Soc., 337, 981–995 (1993).

    Article  MathSciNet  Google Scholar 

  15. V. E. Zakharov and A. V. Mikhailov, “Variational principle for equations integrable by the inverse problem method,” Funct. Anal. Appl., 14, 43–44 (1980).

    Article  MathSciNet  Google Scholar 

  16. L. Faddeev and N. Reshetikhin, “Integrability of the principal chiral field model in \((1+1)\)-dimension,” Ann. Phys., 167, 227–256 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Appadu, T. J. Hollowood, D. Price, and D. C. Thompson, “Quantum anisotropic sigma and lambda models as spin chains,” J. Phys. A: Math. Theor., 51, 405401, 42 pp. (2018); arXiv:1802.06016.

    Article  MathSciNet  Google Scholar 

  18. V. Caudrelier, M. Stoppato, and B. Vicedo, “On the Zakharov–Mikhailov action: 4d Chern–Simons origin and covariant Poisson algebra of the Lax connection,” arXiv:2012.04431.

  19. O. Fukushima, J.-I. Sakamoto, and K. Yoshida, “Faddeev–Reshetikhin model from a 4D Chern–Simons theory,” JHEP, 02, 115, 18 pp. (2021); arXiv:2012.07370.

    Article  ADS  Google Scholar 

  20. L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (2007).

    MATH  Google Scholar 

  21. A. A. Belavin and V. G. Drinfeld, “Solutions of the classical Yang–Baxter equation for simple Lie algebras,” Funct. Anal. Appl., 16, 159–180 (1982).

    Article  MathSciNet  Google Scholar 

  22. I. V. Cherednik, “Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models,” Theoret. and Math. Phys., 47, 422–425 (1981).

    Article  ADS  Google Scholar 

  23. C. Klimčík, “On integrability of the Yang–Baxter \(\sigma\)-model,” J. Math. Phys., 50, 043508, 22 pp. (2009); arXiv:0802.3518.

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Klimčík, “Integrability of the bi-Yang–Baxter sigma-model,” Lett. Math. Phys., 104, 1095–1106 (2014); arXiv:1402.2105.

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Sfetsos, “Integrable interpolations: From exact CFTs to non-Abelian T-duals,” Nucl. Phys. B, 880, 225–246 (2014); arXiv:1312.4560.

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Delduc, M. Magro, and B. Vicedo, “On classical \(q\)-deformations of integrable \(\sigma\)-models,” JHEP, 11, 192, 37 pp. (2013); arXiv:1308.3581.

    Article  ADS  MathSciNet  Google Scholar 

  27. K. Zarembo, “Integrability in sigma-models,” in: Integrability: From Statistical Systems to Gauge Theory (Les Houches, France, 6 June – 1 July, 2016, P. Dorey, G. Korchemsky, N. Nekrasov, V. Schomerus, D. Serban, and L. Cugliandolo, eds.) Les Houches Lecture Notes, Vol. 106, Oxford Univ. Press, Oxford (2019), pp. 205–247; arXiv:1712.07725.

    MathSciNet  MATH  Google Scholar 

  28. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, New York (2002).

    Book  Google Scholar 

  29. S. V. Ketov, Quantum Non-linear Sigma-Models From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings, Springer, Berlin (2000).

    MATH  Google Scholar 

  30. V. Fateev, E. Onofri, and Al. B. Zamolodchikov, “Integrable deformations of the \(\mathrm{O}(3)\) sigma model. The sausage model,” Nucl. Phys. B, 406, 521–565 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  31. V. A. Fateev, “The sigma model (dual) representation for a two-parameter family of integrable quantum field theories,” Nucl. Phys. B, 473, 509–538 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Valent, C. C. Klimčík, and R. Squellari, “One loop renormalizability of the Poisson–Lie sigma models,” Phys. Lett. B, 678, 143–148 (2009); arXiv:0902.1459.

    Article  ADS  MathSciNet  Google Scholar 

  33. S. L. Lukyanov, “The integrable harmonic map problem versus Ricci flow,” Nucl. Phys. B, 865, 308–329 (2012); arXiv:1205.3201.

    Article  ADS  MathSciNet  Google Scholar 

  34. B. Hoare, N. Levine, and A. A. Tseytlin, “Integrable 2d sigma models: quantum corrections to geometry from RG flow,” Nucl. Phys. B, 949, 114798, 17 pp. (2019); arXiv:1907.04737.

    Article  MathSciNet  Google Scholar 

  35. B. Hoare, N. Levine, and A. A. Tseytlin, “Sigma models with local couplings: a new integrability-RG flow connection,” JHEP, 11, 020, 35 pp. (2020); arXiv:2008.01112.

    Article  ADS  MathSciNet  Google Scholar 

  36. F. Delduc, S. Lacroix, K. Sfetsos, and K. Siampos, “RG flows of integrable \(\sigma\)-models and the twist function,” JHEP, 02, 065, 45 pp. (2021); arXiv:2010.07879.

    Article  ADS  Google Scholar 

  37. F. Hassler, “RG flow of integrable \(\mathcal{E}\)-models,” Phys. Lett. B, 818, 136367 (2021); arXiv:2012.10451.

    Article  MathSciNet  Google Scholar 

  38. K. Costello and M. Yamazaki, “Gauge theory and integrability, III,” arXiv:1908.02289.

  39. K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints,” Commun. Math. Phys., 46, 207–221 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Bykov, “Complex structures and zero-curvature equations for \(\sigma\)-models,” Phys. Lett. B, 760, 341–344 (2016); arXiv:1605.01093.

    Article  ADS  Google Scholar 

  41. A. G. Bytsko, “The zero-curvature representation for nonlinear \(O(3)\) sigma-model,” J. Math. Sci. (N. Y.), 85, 1619–1628 (1997); arXiv:hep-th/9403101.

    Article  MathSciNet  Google Scholar 

  42. F. Delduc, T. Kameyama, S. Lacroix, M. Magro, and B. Vicedo, “Ultralocal Lax connection for para-complex \(\mathbb Z_T\)-cosets,” Nucl. Phys. B, 949, 114821, 14 pp. (2019); arXiv:1909.00742.

    Article  MathSciNet  Google Scholar 

  43. V. V. Bazhanov, G. A. Kotousov, and S. L. Lukyanov, “Quantum transfer-matrices for the sausage model,” JHEP, 01, 021, 88 pp. (2018); arXiv:1706.09941.

    Article  ADS  MathSciNet  Google Scholar 

  44. A. D’adda, P. Di Vecchia, and M. Lüscher, “Confinement and chiral symmetry breaking in \(CP^{n_1}\) models with quarks,” Nucl. Phys. B, 152, 125–144 (1979).

    Article  ADS  Google Scholar 

  45. N. Andrei and J. H. Lowenstein, “Diagonalization of the chiral-invariant Gross–Neveu Hamiltonian,” Phys. Rev. Lett., 43, 1698–1701 (1979).

    Article  ADS  Google Scholar 

  46. C. Destri and H. J. de Vega, “Light-cone lattices and the exact solution of chiral fermion and sigma models,” J. Phys. A: Math. Gen., 22, 1329–1353 (1989).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank A. A. Slavnov for support and A. K. Pogrebkov for the invitation to give a talk at the “Polivanov-90” conference. Some of this material was also presented at the conferences “GLSMs-2020” (Virginia Tech, USA) and “RAQIS-2020” (Annecy, France), and I am grateful to the respective organizers E. Sharpe and E. Ragoucy for the invitations.

Funding

This work was supported by the Russian Science Foundation grant RSCF-20-72-10144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bykov.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 165-179 https://doi.org/10.4213/tmf10103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, D.V. Sigma models as Gross–Neveu models. Theor Math Phys 208, 993–1003 (2021). https://doi.org/10.1134/S0040577921080018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921080018

Keywords

Navigation