Skip to main content
Log in

Vacuum charge and current densities in the supercritical two-dimensional Dirac–Coulomb system in a magnetic field with an axial-vector potential

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider nonperturbative vacuum polarization effects in the supercritical region for a planar Dirac–Coulomb system with a supercritical extended axially symmetric Coulomb source with a charge \(Z > Z_{{\rm cr},1}\) and radius \(R_0\) in the magnetic field with an axial-vector potential. We study the behavior of the vacuum charge and vacuum current densities, \(\rho_{\mathrm{VP}}(\vec r\,)\) and \(\vec{j}_{\mathrm{VP}}(\vec r\,)\). We focus on the divergence in the theory corresponding to the renormalization and convergence of partial series for \(\rho_{\mathrm{VP}}(\vec r\,)\) and \(\vec{j}_{\mathrm{VP}}(\vec r\,)\). We stress that in contrast to the vacuum charge density, the partial channels with large values of the third projection of the total angular momentum \(|m_j|\) must be taken into account in calculating the vacuum current density in the presence of an external magnetic field localized in the range \(R_1>R_0\). We show that in the presence of a supercritical Coulomb source, the induced magnetic field can enhance the original magnetic field for certain values of parameters of the external vector potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater., 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  2. A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, “Vacuum polarization and screening of supercritical impurities in graphene,” Phys. Rev. Lett., 99, 236801, 4 pp. (2007).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  4. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., 100, 016602, 4 pp. (2008).

    Article  ADS  Google Scholar 

  5. V. M. Kuleshov, V. D. Mur, N. B. Narozhny, A. M. Fedotov, and Y. E. Lozovik, “Coulomb problem for graphene with the gapped electron spectrum,” JETP Lett., 101, 264–270 (2015).

    Article  ADS  Google Scholar 

  6. V. M. Kuleshov, V. D. Mur, N. B. Narozhny, A. M. Fedotov, Y. E. Lozovik, and V. S. Popov, “Coulomb problem for a \(Z>Z_\mathrm{cr}\) nucleus,” Phys. Usp., 58, 785–791 (2015).

    Article  ADS  Google Scholar 

  7. V. N. Kotov, V. M. Pereira, and B. Uchoa, “Polarization charge distribution in gapped graphene: Perturbation theory and exact diagonalization analysis,” Phys. Rev. B, 78, 075433, 5 pp. (2008).

    Article  ADS  Google Scholar 

  8. V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. C. Neto, “Electron-electron interactions in graphene: Current status and perspectives,” Rev. Modern Phys., 84, 1067–1125 (2012).

    Article  ADS  Google Scholar 

  9. A. Bubnov, N. Gubina, and V. Zhukovsky, “Vacuum current induced by an axial-vector condensate and electron anomalous magnetic moment in a magnetic field,” Phys. Rev. D, 96, 016011, 10 pp. (2017).

    Article  ADS  Google Scholar 

  10. P. Górnicki, “Aharonov–Bohm effect and vacuum polarization,” Ann. Phys., 202, 271–296 (1990).

    Article  ADS  Google Scholar 

  11. H.-N. Li, D. A. Coker, and A. S. Goldhaber, “Self-consistent solutions for vacuum currents around a magnetic flux string,” Phys. Rev. D, 47, 694–702 (1993).

    Article  ADS  Google Scholar 

  12. R. Jackiw, A. I. Milstein, S.-Y. Pi, and I. S. Terekhov, “Induced current and Aharonov–Bohm effect in graphene,” Phys. Rev. B, 80, 033413, 3 pp. (2009).

    Article  ADS  Google Scholar 

  13. Y. Nishida, “Vacuum polarization of graphene with a supercritical coulomb impurity: Low-energy universality and discrete scale invariance,” Phys. Rev. B, 90, 165414, 6 pp. (2014).

    Article  ADS  Google Scholar 

  14. V. Khalilov and I. Mamsurov, “Planar density of vacuum charge induced by a supercritical coulomb potential,” Phys. Lett. B, 769, 152–158 (2017).

    Article  ADS  Google Scholar 

  15. V. R. Khalilov and K. E. Lee, “Planar massless fermions in couloumb and Aharonov–Bohm potentials,” Internat. J. Modern Phys. A, 27, 1250169, 14 pp. (2012).

    Article  ADS  Google Scholar 

  16. A. I. Milstein and I. S. Terekhov, “Induced charge generated by a potential well in graphene,” Phys. Rev. B, 81, 125419, 5 pp. (2010).

    Article  ADS  Google Scholar 

  17. A. I. Milstein and I. S. Terekhov, “Induced current in the presence of a magnetic flux tube of small radius,” Phys. Rev. B, 83, 075420, 5 pp. (2011).

    Article  ADS  Google Scholar 

  18. Yu. A. Sitenko and N. D. Vlasii, “Vacuum polarization effects on graphitic nanocones,” J. Phys.: Conf. Ser., 129, 012008, 9 pp. (2008).

    Google Scholar 

  19. A. Davydov, K. Sveshnikov, and Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac–Coulomb system I. Vacuum charge density,” Internat. J. Modern Phys. A, 33, 1850004, 25 pp. (2018); arXiv:1712.02704.

    Article  ADS  Google Scholar 

  20. Yu. S. Voronina, A. S. Davydov, and K. A. Sveshnikov, “Vacuum effects for a one-dimensional “hydrogen atom” with \(Z>Z_{\mathrm{cr}}\),” Theoret. and Math. Phys., 193, 1647–1674 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. A. Sveshnikov, Yu. S. Voronina, A. S. Davydov, and P. A. Grashin, “Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with \(Z>Z_\mathrm{cr}\): Vacuum charge density,” Theoret. and Math. Phys., 198, 331–362 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  22. K. A. Sveshnikov, Yu. S. Voronina, A. S. Davydov, and P. A. Grashin, “Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system for \(Z>Z_{\text{cr}}\): Vacuum polarization effects,” Theoret. and Math. Phys., 199, 533–561 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Davydov, K. Sveshnikov, and Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac–Coulomb system II. Vacuum energy,” Internat. J. Modern Phys. A, 33, 1850005 (2018); arXiv:1712.02703.

    Article  ADS  Google Scholar 

  24. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  25. P. A. Grashin and K. A. Sveshnikov, “Ferromagnetic phase in graphene-based planar heterostructures induced by charged impurity,” Ann. Phys., 532, 1900351, 12 pp. (2020).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Professor K. A. Sveshnikov (Faculty of Physics, Moscow State University) for stating the problem and P. A. Grashin (Faculty of Physics, Moscow State University) for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Davydov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 208, pp. 122-144 https://doi.org/10.4213/tmf10048.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.S., Krasnov, A.A. & Kuz’min, V.A. Vacuum charge and current densities in the supercritical two-dimensional Dirac–Coulomb system in a magnetic field with an axial-vector potential. Theor Math Phys 208, 958–976 (2021). https://doi.org/10.1134/S0040577921070096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921070096

Keywords

Navigation