Skip to main content
Log in

Essentially Nonperturbative Vacuum Polarization Effects in a Two-Dimensional Dirac–Coulomb System with Z > Zcr: Vacuum Charge Density

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a planar Dirac–Coulomb system with a supercritical axially symmetric Coulomb source with the charge Z > Zcr,1 and radius R0, we consider essentially nonperturbative vacuum-polarization effects. Based on a special combination of analytic methods, computer algebra, and numerical calculations used in our previous papers to study analogous effects in the one-dimensional “hydrogen atom,” we study the behavior of both the vacuum density ρVP(r⃗) and the total induced charge and also the vacuum-polarization energy EVP. We mainly focus on divergences of the theory and the corresponding renormalization, on the convergence of partial series for ρVP(r⃗) and ɛVP, on the integer-valuedness of the total induced charge, and on the behavior of the vacuum energy in the overcritical region. In particular, we show that the renormalization via the fermion loop with two external legs turns out to be a universal method, which removes the divergence of the theory in the purely perturbative and essentially nonperturbative modes for ρVP and ɛVP. The most important result is that for Z ≫ Zcr,1 in such a system, the vacuum energy becomes a rapidly decreasing function of the source charge Z, which reaches large negative values and whose behavior is estimated from below (in absolute value) as ~ −|ηeffZ3|/R0. We also study the dependence of polarization effects on the cutoff of the Coulomb asymptotic form of the external field. We show that screening the asymptotic value significantly changes the structure and properties of the first partial channels with mj = ±1/2,±3/2. We consider the nonperturbative calculation technique and the behavior of the induced density and the integral induced charge QVP in the overcritical region in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Reinhardt and W. Greiner, “Quantum electrodynamics of strong fields,” Rep. Progr. Phys., 40, 219–295 (1977).

    Article  ADS  Google Scholar 

  2. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer, Berlin (1985).

    Book  Google Scholar 

  3. G. Plunien, B. Müller, and W. Greiner, “The Casimir effect,” Phys. Rep., 134, 87–193 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Ruffini, G. Vereshchagin, and S.-S. Xue, “Electron–positron pairs in physics and astrophysics: From heavy nuclei to black holes,” Phys. Rep., 487, 1–140 (2010); arXiv:0910.0974v3 [astro-ph.HE] (2009).

    Article  ADS  Google Scholar 

  5. W. Greiner and J. Reinhardt, Quantum Electrodynamics, Springer, Berlin (2012).

    MATH  Google Scholar 

  6. V. M. Kuleshov, V. D. Mur, N. B. Narozhnyi, A. M. Fedotov, Yu. E. Lozovik, and V. S. Popov, “Coulomb problem for a Z > Zcr,” Phys. Usp., 58, 785–791 (2015).

    Article  ADS  Google Scholar 

  7. J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, and W. Greiner, “Probing QED vacuum with heavy ions,” arXiv:1604.08690v1 [nucl-th] (2016).

    Google Scholar 

  8. S. I. Godunov, B. Machet, and M. I. Vysotsky, “Resonances in positron scattering on a supercritical nucleus and spontaneous production of e+e − pairs,” Eur. Phys. J. C, 77, 782 (2017); arXiv:1707.07497v2 [hep-ph] (2017).

    Article  ADS  Google Scholar 

  9. M. I. Katsnelson, “Nonlinear screening of charge impurities in graphene,” Phys. Rev. B, 74, 201401 (2006); arXiv:cond-mat/0609026v3 [cond-mat.mes-hall] (2006).

    Article  ADS  Google Scholar 

  10. A. V. Shytov, M. I. Katsnelson, and S. Levitov, “Vacuum polarization and screening of supercritical impurities in graphene,” Phys. Rev. Lett., 99, 236801 (2007); arXiv:0705.4663v2 [cond-mat.mes-hall] (2007).

    Article  ADS  Google Scholar 

  11. K. Nomura and A. H. MacDonald, “Quantum transport of massless Dirac fermions,” Phys. Rev. Lett., 98, 076602 (2007).

    Article  ADS  Google Scholar 

  12. V. N. Kotov, V. M. Pereira, and B. Uchoa, “Polarization charge distribution in gapped graphene: Perturbation theory and exact diagonalization analysis,” Phys. Rev. B, 78, 075433 (2008).

    Article  ADS  Google Scholar 

  13. V. M. Pereira, V. N. Kotov, and A. H. Castro Neto, “Supercritical Coulomb impurities in gapped graphene,” Phys. Rev. B, 78, 085101 (2008); arXiv:0803.4195v2 [cond-mat.mes-hall] (2008).

    Article  ADS  Google Scholar 

  14. I. F. Herbut, “Topological insulator in the core of the superconducting vortex in graphene,” Phys. Rev. Lett., 104, 066404 (2010).

    Article  ADS  Google Scholar 

  15. Y. Wang, D. Wong, A. V. Shytov, V. W. Brar, S. Choi, Q. Wu, H.-Z. Tsai, W. Regan, A. Zettl, R. K. Kawakami, S. G. Louie, L. S. Levitov, and M. F. Crommie, “Observing atomic collapse resonances in artificial nuclei on graphene,” Science, 340, 734–737 (2013); arXiv:1510.02890v1 [cond-mat.mes-hall] (2015).

    Article  ADS  Google Scholar 

  16. Y. Nishida, “Vacuum polarization of graphene with a supercritical Coulomb impurity: Low-energy universality and discrete scale invariance,” Phys. Rev. B, 90, 165411 (2014); arXiv:1405.6299v2 [cond-mat.mes-hall] (2014).

    Article  ADS  Google Scholar 

  17. R. Barbieri, “Hydrogen atom in superstrong magnetic fields: Relativistic treatment,” Nucl. Phys. A, 161, 1–11 (1991).

    Article  ADS  Google Scholar 

  18. V. P. Krainov, “A hydrogen-like atom in a superstrong magnetic field,” Sov. Phys. JETP, 37, 406 (1973).

    ADS  Google Scholar 

  19. A. E. Shabad and V. V. Usov, “Positronium collapse and the maximum magnetic field in pure QED,” Phys. Rev. Lett., 96, 180401 (2006); arXiv:hep-th/0605020v1 (2006).

    Article  ADS  Google Scholar 

  20. A. E. Shabad and V. V. Usov, “Bethe–Salpeter approach for relativistic positronium in a strong magnetic field,” Phys. Rev. D, 73, 125021 (2006); arXiv:hep-th/0603070v2 (2006).

    Article  ADS  Google Scholar 

  21. A. E. Shabad and V. V. Usov, “Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom,” Phys. Rev. D, 77, 025001 (2008); arXiv:0707.3475v3 [astro-ph] (2007).

    Article  ADS  Google Scholar 

  22. V. N. Oraevskii, A. I. Rez, and V. B. Semikoz, “Spontaneous production of positrons by a Coulomb center in a homogeneous magnetic field,” Sov. JETP, 45, 428–435 (1977).

    ADS  Google Scholar 

  23. B. M. Karnakov and V. S. Popov, “A hydrogen atom in a superstrong magnetic field and the Zeldovich effect,” JETP, 97, 890–914 (2003).

    Article  ADS  Google Scholar 

  24. M. I. Vysotskii and S. I. Godunov, “Critical charge in a superstrong magnetic field,” Phys. Usp., 57, 194–198 (2014).

    Article  ADS  Google Scholar 

  25. A. Davydov, K. Sveshnikov, and Yu. Voronina, “Vacuum energy of one-dimensional supercritical Dirac–Coulomb system,” Internat. J. Modern Phys. A, 32, 1750054 (2017); arXiv:1709.04239v1 [hep-th] (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Yu. S. Voronina, A. S. Davydov, and K. A. Sveshnikov, “Vacuum effects for a one-dimensional ‘hydrogen atom’ with Z > Zcr,” Theor. Math. Phys., 193, 1647–1674 (2017).

    Article  MATH  Google Scholar 

  27. Yu. Voronina, A. Davydov, and K. Sveshnikov, “Nonperturbative effects of vacuum polarization for a quasi-onedimensional Dirac–Coulomb system with Z > Zcr,” Phys. Part. Nucl. Lett., 14, 698–712 (2017).

    Article  Google Scholar 

  28. Yu. S. Voronina, A. S. Davydov, K. A. Sveshnikov, and P. A. Grashin, “Essential nonperturbative vacuumpolarization effects in a two-dimensional Dirac–Coulomb system for Z > Zcr: Vacuum-polarization energy,” Theor. Math. Phys. (2019 in press).

    Google Scholar 

  29. P. Gärtner, U. Heinz, B. Müller, and W. Greiner, “Limiting charge for electrostatic point sources,” Z. Phys. A, 300, 143–155 (1981).

    Article  ADS  Google Scholar 

  30. I. Aleksandrov, G. Plunien, and V. Shabaev, “Nuclear recoil and vacuum-polarization effects on the binding energies of supercritical H-like ions,” Eur. Phys. J. D, 70, 18 (2016); arXiv:1511.04346v1 [physics.atom-ph] (2015).

    Article  ADS  Google Scholar 

  31. B. L. Voronov, D. M. Gitman, and I. V. Tyutin, “The Dirac Hamiltonian with a superstrong Coulomb field,” Theor. Math. Phys., 150, 34–72 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  32. D. M. Gitman, I. V. Tyutin, and B. L. Voronov, Self-Adjoint Extensions in Quantum Mechanics (Progr. Math. Phys., Vol. 62), Springer, New York (2012).

    Book  MATH  Google Scholar 

  33. D. Gitman, A. Levin, I. Tyutin, and B. L. Voronov, “Electronic structure of super heavy atoms revisited,” Phys. Scr., 87, 038104 (2013).

    Article  ADS  MATH  Google Scholar 

  34. V. R. Khalilov and I. V. Mamsurov, “Planar density of vacuum charge induced by a supercritical Coulomb potential,” Phys. Lett. B, 769, 152–158 (2017); arXiv:1604.01271v1 [hep-th] (2016).

    Article  ADS  MATH  Google Scholar 

  35. A. Davydov, K. Sveshnikov, and Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac–Coulomb system: I. Vacuum charge density,” Internat. J. Modern Phys. A, 33, 1850004 (2018); arXiv:1712.02704v1 [hep-th] (2017).

    Article  ADS  MATH  Google Scholar 

  36. P. J. Mohr, G. Plunien, and G. Soff, “QED corrections in heavy atoms,” Phys. Rep., 293, 227–369 (1998).

    Article  ADS  Google Scholar 

  37. E. H. Wichmann and N. M. Kroll, “Vacuum polarization in a strong Coulomb field,” Phys. Rev., 101, 843–859 (1956).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Y. Hosotani, “Spontaneously broken Lorentz invariance in three-dimensional gauge theories,” Phys. Lett. B, 319, 332–338 (1993); arXiv:hep-th/9308045v1 (1993).

    Article  ADS  Google Scholar 

  39. V. R. Khalilov and I. V. Mamsurov, “Vacuum polarization of planar charged fermions with Coulomb and Aharonov–Bohm potentials,” Modern Phys. Lett. A, 31, 1650032 (2016); arXiv:1509.02775v2 [cond-mat.meshall] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  41. M. Gyulassy, “Higher order vacuum polarization for finite radius nuclei,” Nucl. Phys. A, 244, 497–525 (1975).

    Article  ADS  Google Scholar 

  42. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., 124, 1866–1878 (1962).

    Article  ADS  MATH  Google Scholar 

  43. Yu. Voronina, K. Sveshnikov, P. Grashin, and A. Davydov, “Essentially non-perturbative and peculiar polarization effects in planar QED with strong coupling,” Phys. E, 106, 298–311 (2019); arXiv:1805.10688v2 [cond-mat.mes-hall] (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Sveshnikov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 198, No. 3, pp. 381–417, March, 2019. Received October 26, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveshnikov, K.A., Voronina, Y.S., Davydov, A.S. et al. Essentially Nonperturbative Vacuum Polarization Effects in a Two-Dimensional Dirac–Coulomb System with Z > Zcr: Vacuum Charge Density. Theor Math Phys 198, 331–362 (2019). https://doi.org/10.1134/S0040577919030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919030024

Keywords

Navigation