Skip to main content
Log in

Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the framework of the concept of time correlation functions, we develop a self-consistent relaxation theory of the transverse collective particle dynamics in liquids. The theory agrees with well-known results in both the short-wave (free-particle dynamics) and the long-wave (hydrodynamic) limits. We obtain a general expression for the spectral density \(C_{ \mathrm{T} }(k,\omega)\) of the transverse particle current realized in a range of wave numbers \(k\). In the domain of microscopic spatial scales comparable to the action range of effective forces of interparticle interaction, the theory reproduces a transition from a regime with typical equilibrium liquid dynamics to a regime with collective particle dynamics where properties similar to solid-state properties appear: effective shear stiffness and transverse (shear) acoustic waves. In the framework of the corresponding approximations, we obtain expressions for the spectral density of transverse particle current for all characteristic regimes in equilibrium collective dynamics. We obtain expressions for the dispersion law for transverse (shear) acoustic waves and also relations for the kinematic shear viscosity \(\nu\), the transverse speed of sound \(v^{( \mathrm{T} )}\), and the corresponding sound damping coefficient \(\Gamma^{( \mathrm{T} )}\). We compare the theoretical results with the results of atomistic dynamics simulations of liquid lithium near the melting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The parameters \(\Delta_{ \mathrm{T} ,\,l}^2(k)\) are called static correlation functions in the Mori formalism [47] and denote recursion coefficients in LeeтАЩs recurrence relation method [50].

  2. The embedded atom model is abbreviated EAM.

References

  1. J. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford (1946).

    MATH  Google Scholar 

  2. A. M. Prokhorov et al., eds., Encyclopedic Dictionary of Physics [in Russian], Sovet. Entsiklopediya, Moscow (1983).

    Google Scholar 

  3. A. M. Prokhorov et al., eds., Encyclopedia of Physics [in Russian], Vol. 2, Bol’shaya Rossiiskaya Entsiklopediya, Moscow (1998).

    Google Scholar 

  4. K. Trachenko and V. V. Brazhkin, “Collective modes and thermodynamics of the liquid state,” Rep. Prog. Phys., 79, 016502 (2016); arXiv:1512.06592v1 [cond-mat.soft] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. E. E. Tareyeva, Yu. D. Fomin, E. N. Tsyok, and V. N. Ryzhov, “Supercritical anomalies and the Widom line for the isostructural phase transition in solids,” Theor. Math. Phys., 194, 148–156 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. V. Granato, “The shear modulus of liquids,” J. Phys. IV France, 06, C8-1–C8-9 (1996).

    Article  Google Scholar 

  7. D. Levesque, L. Verlet, and J. Kürkijarvi, “Computer ‘experiments’ on classical fluids: IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point,” Phys. Rev. A, 7, 1690–1700 (1973).

    Article  ADS  Google Scholar 

  8. L. Sjögren, “Kinetic theory of classical liquids: III. Numerical results on the transverse current correlation in liquid argon,” Ann. Phys., 110, 173–179 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. Donkó, G. J. Kalman, and P. Hartmann, “Dynamical correlations and collective excitations of Yukawa liquids,” J. Phys.: Condens. Matter, 20, 413101 (2008).

    Google Scholar 

  10. S. A. Khrapak, A. G. Khrapak, N. P. Kryuchkov, and S. O. Yurchenko, “Onset of transverse (shear) waves in strongly-coupled Yukawa fluids,” J. Chem. Phys., 150, 104503 (2019); arXiv:1902.09874v1 [physics.plasm-ph] (2019).

    Article  ADS  Google Scholar 

  11. R. E. Ryltsev, N. M. Chtchelkatchev, and V. N. Ryzhov, “Superfragile glassy dynamics of a one-component system with isotropic potential: Competition of diffusion and frustration,” Phys. Rev. Lett., 110, 025701 (2013); arXiv:1301.2162v1 [cond-mat.soft] (2013).

    Article  ADS  Google Scholar 

  12. B. G. del Rio and L. E. González, “Longitudinal, transverse, and single-particle dynamics in liquid Zn: Ab initio study and theoretical analysis,” Phys. Rev. B, 95, 224201 (2017).

    Article  ADS  Google Scholar 

  13. N. Jakse and T. Bryk, “Pressure evolution of transverse collective excitations in liquid Al along the melting line,” J. Chem. Phys., 151, 034506 (2019).

    Article  ADS  Google Scholar 

  14. M. Ropo, J. Akola, and R. O. Jones, “Collective excitations and viscosity in liquid Bi,” J. Chem. Phys., 145, 184502 (2016).

    Article  ADS  Google Scholar 

  15. Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, and V. V. Brazhkin, “Anomalous behavior of dispersion of longitudinal and transverse collective excitations in water,” J. Mol. Liq., 287, 110992 (2019).

    Article  Google Scholar 

  16. L. Wang, C. Yang, M. T. Dove, A. V. Mokshin, V. V. Brazhkin, and K. Trachenko, “The nature of collective excitations and their crossover at extreme supercritical conditions,” Sci. Rep., 9, 755 (2019); arXiv:1901.10052v1 [cond-mat.stat-mech] (2019).

    Article  ADS  Google Scholar 

  17. S. Hosokawa, M. Inui, Y. Kajihara, S. Tsutsui, and A. Q. R. Baron, “Transverse excitations in liquid Fe, Cu and Zn,” J. Phys.: Condens. Matter, 27, 194104 (2015).

    ADS  Google Scholar 

  18. P. A. Egelstaff, An Introduction to the Liquid State, Acad. Press, New York (1967).

    Google Scholar 

  19. E. Burkel and H. Sinn, “Inelastic X-ray scattering: A new technique for studying dynamics in liquids,” J. Phys.: Condens. Matter, 6, No. 23A, A225–A228 (1994).

    ADS  Google Scholar 

  20. S. Hosokawa, M. Inui, Y. Kajihara, K. Matsuda, T. Ichitsubo, W.-C. Pilgrim, H. Sinn, L. E. González, D. J. González, S. Tsutsui, and A. Q. R. Baron, “Transverse acoustic excitations in liquid Ga,” Phys. Rev. Lett., 102, 105502 (2009).

    Article  ADS  Google Scholar 

  21. S. Hosokawa, S. Munejiri, M. Inui, Y. Kajihara, W.-C. Pilgrim, Y. Ohmasa, S. Tsutsui, A. Q. R. Baron, F. Shimojo, and K. Hoshino, “Transverse excitations in liquid Sn,” J. Phys.: Condens. Matter, 25, 112101 (2013).

    ADS  Google Scholar 

  22. V. M. Giordano and G. Monaco, “Fingerprints of order and disorder on the high-frequency dynamics of liquids,” Proc. Natl. Acad. Sci. USA, 107, 21985–21989 (2010).

    Article  ADS  Google Scholar 

  23. V. M. Giordano and G. Monaco, “Inelastic x-ray scattering study of liquid Ga: Implications for the short-range order,” Phys. Rev. B, 84, 052201 (2011).

    Article  ADS  Google Scholar 

  24. R. A. MacPhail and D. Kivelson, “Generalized hydrodynamic theory of viscoelasticity,” J. Chem. Phys., 80, 2102–2114 (1984).

    Article  ADS  Google Scholar 

  25. T. Bryk and I. Mryglod, “Generalized hydrodynamics of binary liquids: Transverse collective modes,” Phys. Rev. E, 62, 2188–2199 (2000).

    Article  ADS  Google Scholar 

  26. I. P. Omelyan and I. M. Mryglod, “Generalized collective modes of a Lennard-Jones fluid: High mode approximation,” Condens. Matter Phys., 4, 128–160 (1994).

    Article  Google Scholar 

  27. K. Trachenko, “Lagrangian formulation and symmetrical description of liquid dynamics,” Phys. Rev. E, 96, 062134 (2017); arXiv:1710.01390v3 [cond-mat.stat-mech] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Baggioli, M. Vasin, V. Brazhkin, and K. Trachenko, “Gapped momentum states,” Phys. Rep., 865, 1–44 (2020); arXiv:1904.01419v2 [cond-mat.stat-mech] (2019).

    Article  ADS  MathSciNet  Google Scholar 

  29. N. P. Kryuchkov, L. A. Mistryukova, V. V. Brazhkin, and S. O. Yurchenko, “Excitation spectra in fluids: How to analyze them properly,” Sci. Rep., 9, 10483 (2019).

    Article  ADS  Google Scholar 

  30. N. P. Kryuchkov, V. V. Brazhkin, and S. O. Yurchenko, “Anticrossing of longitudinal and transverse modes in simple fluids,” J. Phys. Chem. Lett., 10, 4470–4475 (2019).

    Article  Google Scholar 

  31. E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. V. Sapelkin, V. V. Brazhkin, and S. O. Yurchenko, “Direct experimental evidence of longitudinal and transverse mode hybridization and anticrossing in simple model fluids,” J. Phys. Chem. Lett., 11, 1370–1376 (2020).

    Article  Google Scholar 

  32. Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, and K. Trachenko, “Corrigendum: Crossover of collective modes and positive sound dispersion in supercritical state,” J. Phys.: Condens. Matter, 29, 059501 (2017).

    ADS  Google Scholar 

  33. V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, and K. Trachenko, “Liquid-like and gas-like features of a simple fluid: An insight from theory and simulation,” Phys. A, 509, 690–702 (2018).

    Article  Google Scholar 

  34. R. M. Yulmetyev, A. V. Mokshin, P. Hänggi, and V. Yu. Shurygin, “Time-scale invariance of relaxation processes of density fluctuation in slow neutron scattering in liquid cesium,” Phys. Rev. E, 64, 057101 (2001); arXiv:cond-mat/0111467v1 (2001).

    Article  ADS  Google Scholar 

  35. R. M. Yul’met’yev, A. V. Mokshin, P. Hänggi, and V. Yu. Shurygin, “Dynamic structure factor in liquid cesium on the basis of time-scale invariance of relaxation processes,” JETP Lett., 76, 147–150 (2002).

    Article  ADS  Google Scholar 

  36. A. V. Mokshin and B. N. Galimzyanov, “Self-consistent description of local density dynamics in simple liquids: The case of molten lithium,” J. Phys.: Condens. Matter, 30, 085102 (2018); arXiv:1801.04879v1 [cond-mat.soft] (2018).

    ADS  Google Scholar 

  37. R. M. Yulmetyev, A. V. Mokshin, T. Scopigno, and P. Hänggi, “New evidence for the idea of timescale invariance of relaxation processes in simple liquids: The case of molten sodium,” J. Phys.: Codens. Matter, 15, 2235–2257 (2003).

    ADS  Google Scholar 

  38. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, “Relaxation time scales in collective dynamics of liquid alkali metals,” J. Chem. Phys., 121, 7341–7346 (2004); arXiv:cond-mat/0506636v1 (2005).

    Article  ADS  Google Scholar 

  39. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hänggi, “Collective dynamics in liquid aluminum near the melting temperature: Theory and computer simulation,” JETP, 103, 841–849 (2006).

    Article  ADS  Google Scholar 

  40. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi, “Analysis of the dynamics of liquid aluminium: Recurrent relation approach,” J. Phys.: Condens. Matter, 19, 046209 (2007).

    ADS  Google Scholar 

  41. R. M. Khusnutdinoff, C. Cockrell, O. A. Dicks, A. C.!S. Jensen, M. D. Le, L. Wang, M. T. Dove, A. V. Mokshin, V. V. Brazhkin, and K. Trachenko, “Collective modes and gapped momentum states in liquid Ga: Experiment, theory, and simulation,” Phys. Rev. B, 101, 214312 (2020); arXiv:2005.00470v4 [cond-mat.soft] (2020).

    Article  ADS  Google Scholar 

  42. V. N. Ryzhov, A. F. Barabanov, M. V. Magnitskaya, and E. E. Tareeva, “Theoretical studies of condensed matter,” Phys. Usp., 51, 1077–1083 (2008).

    Article  ADS  Google Scholar 

  43. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Acad. Press, London (2006).

    MATH  Google Scholar 

  44. R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, Oxford (2001).

    MATH  Google Scholar 

  45. A. V. Mokshin and R. M. Yulmetyev, Microscopic Dynamics of Simple Liquids [in Russian], Tsentr Innovatsionnykh Tekhnologii, Kazan (2006).

    Google Scholar 

  46. B. A. Klumov, “On melting criteria for complex plasma,” Phys. Usp., 53, 1053–1065 (2010).

    Article  ADS  Google Scholar 

  47. U. Balucani, M. H. Lee, and V. Tognetti, “Dynamical correlations,” Phys. Rep., 373, 409–492 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis, Acad. Press, New York (1972).

    MATH  Google Scholar 

  49. A. A. Vladimirov, D. Ihle, and N. M. Plakida, “Dynamical spin susceptibility in the \(t\)\(J\) model: The memory function method,” Theor. Math. Phys., 145, 1576–1589 (2005).

    Article  MATH  Google Scholar 

  50. M. H. Lee, “Generalized Langevin equation and recurrence relations,” Phys. Rev. E, 62, 1769–1772 (2000).

    Article  ADS  Google Scholar 

  51. A. V. Mokshin, R. M. Yulmetyev, and P. Hänggi, “Simple measure of memory for dynamical processes described by a generalized Langevin equation,” Phys. Rev. Lett., 95, 200601 (2005); arXiv:cond-mat/0511308v1 (2005).

    Article  ADS  Google Scholar 

  52. A. V. Mokshin, “Self-consistent approach to the description of relaxation processes in classical multiparticle systems,” Theor. Math. Phys., 183, 449–477 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  53. N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics [in Russian],, Gostekhizdat, Moscow (1946); English transl. (Stud. Statist. Mech., Vol. 1), North-Holland, Amsterdam (1962).

    Google Scholar 

  54. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Intl. Ser. Monogr. Phys., Vol. 143), Oxford Univ. Press, Oxford (2012).

    MATH  Google Scholar 

  55. P. Resibua and M. De Lener, Classical Kinetic Theory of Liquids and Gases [in Russian], Mir, Moscow (1980).

    Google Scholar 

  56. R. Mountain, “Spectral distribution of scattered light in a simple fluid,” Rev. Modern Phys., 38, 205–214 (1966).

    Article  ADS  Google Scholar 

  57. T. Scopigno, U. Balucani, G. Ruocco, and F. Sette, “Density fluctuations in molten lithium: Inelastic x-ray scattering study,” J. Phys.: Condens. Matter, 12, 8009–8034 (2000).

    ADS  Google Scholar 

  58. I. K. Kamilov, A. K. Murtazaev, and Kh. K. Aliev, “Monte Carlo studies of phase transitions and critical phenomena,” Phys. Usp., 42, 689–709 (1999).

    Article  ADS  Google Scholar 

  59. R. M. Khusnutdinoff, B. N. Galimzyanov, and A. V. Mokshin, “Dynamics of liquid lithium atoms: Pseudopotential and EAM-type potentials,” JETP, 126, 83–89 (2018).

    Article  ADS  Google Scholar 

  60. L. E. González, D. J. González, M. Silbert, and J. A. Alonso, “A theoretical study of the static structure and thermodynamics of liquid lithium,” J. Phys.: Condens. Matter, 5, 4283–4298 (1993).

    ADS  Google Scholar 

  61. A. V. Mokshin, A. V. Chvanova, and R. M. Khusnutdinov, “Mode-coupling approximation in a fractional-power generalization: Particle dynamics in supercooled liquids and glasses,” Theor. Math. Phys., 171, 541–552 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids, McGraw-Hill, New York (1980).

    Google Scholar 

  63. R. W. Ohse, ed., Handbook of Thermodynamic and Transport Properties of Alkali Metals (Chem. Data Ser., Vol. 30), Blackwell Scientific, Oxford (1985).

    Google Scholar 

  64. A. V. Mokshin and B. N. Galimzyanov, “Corrigendum: Self-consistent description of local density dynamics in simple liquids: The case of molten lithium,” J. Phys.: Condens. Matter, 31, 209501 (2019).

    ADS  Google Scholar 

  65. J. R. D. Copley and S. W. Lovesey, “The dynamic properties of monatomic liquids,” Rep. Prog. Phys., 38, 461–563 (1975).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by a grant from the Russian Science Foundation (Project No. 19-12-00022). The part related to the development of a microscopic description was supported by the Russian Foundation for Basic Research (Grant No. 18-02-00407_a).

The research of A. V. Mokshin was supported by the Foundation for Development of Theoretical Physics and Mathematics “BAZIS.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mokshin.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokshin, A.V., Khusnutdinoff, R.M., Vilf, Y.Z. et al. Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory. Theor Math Phys 206, 216–235 (2021). https://doi.org/10.1134/S0040577921020082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921020082

Keywords

Navigation