Skip to main content
Log in

Algebraic Bethe ansatz for \(\mathfrak o_{2n+1}\)-invariant integrable models

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the class of \( \mathfrak{o} _{2n+1}\)-invariant quantum integrable models in the framework of the algebraic Bethe ansatz and propose a construction of the \( \mathfrak{o} _{2n+1}\)-invariant Bethe vector in terms of the Drinfeld currents for the Yangian double \( \mathcal{D}Y ( \mathfrak{o} _{2n+1})\). We calculate the action of the monodromy matrix elements on the off-shell Bethe vectors for these models and obtain recurrence relations for these vectors. The action formulas can be used to investigate scalar products of Bethe vectors in \( \mathfrak{o} _{2n+1}\)-invariant models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We recall that the zero modes \(T_{i,j}[0]\) are denoted by \(T_{i,j}\) for \(-n\le i,j\le n\).

  2. In what follows, we omit the superscript in the notation for the monodromy matrix elements \(T^{ \mathbb{K} }_{i,j}(u)\) and always assume expansion (3.8).

References

  1. A. B. Zamolodchikov and Al. B. Zamolodchikov, “Factorized \(S\)-matrices in two dimensions as the exact solutions of certain relativistic quantum field models,” Ann. Phys., 120, 253–291 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Yu. Reshetikhin, “Integrable models of quantum one-dimensional magnets with \(O(n)\) and \(Sp(2k)\) symmetry,” Theor. Math. Phys., 63, 555–569 (1985).

    Article  Google Scholar 

  3. N. Y. Reshetikhin, “Algebraic Bethe ansatz for \(SO(N)\)-invariant transfer matrices,” J. Math. Sci., 54, 940–951 (1991).

    Article  MathSciNet  Google Scholar 

  4. M. J. Martins and P. B. Ramos, “The algebraic Bethe ansatz for rational braid-monoid lattice models,” Nucl. Phys. B, 500, 579–620 (1997); arXiv:hep-th/9703023v1 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  5. V. G. Drinfeld, “Quantum groups,” J. Soviet Math., 41, 898–915 (1988).

    Article  MathSciNet  Google Scholar 

  6. V. G. Drinfeld, “A new realization of Yangians and of quantum affine algebras,” Dokl. Math., 36, 212–216 (1988).

    MathSciNet  Google Scholar 

  7. J. Ding and I. Frenkel, “Isomorphism of two realizations of quantum affine algebra \(U_q( \mathfrak{gl} (n))\),” Commun. Math. Phys., 156, 277–300 (1993).

    Article  ADS  Google Scholar 

  8. N. Jing, F. Yang, and M. Liu, “Yangian doubles of classical types and their vertex representations,” J. Math. Phys., 61, 051704 (2020); arXiv:1810.06484v4 [math.QA] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. N. Jing, M. Liu, and A. Molev, “Isomorphism between the \(R\)-matrix and Drinfeld presentations of Yangian in types \(B\), \(C\), and \(D\),” Commun. Math. Phys., 361, 827–872 (2018); arXiv:1705.08155v3 [math.QA] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Jing, M. Liu, and A. Molev, “Isomorphism between the \(R\)-matrix and Drinfeld presentations of quantum affine algebra: Type \(C\),” J. Math. Phys., 61, 031701 (2020); arXiv:1903.00204v4 [math.QA] (2019).

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Jing, M. Liu, and A. Molev, “Isomorphism between the \(R\)-matrix and Drinfeld presentations of quantum affine algebra: Types \(B\) and \(D\),” SIGMA, 16, 043 (2020); arXiv:1911.03496v2 [math.QA] (2019).

    MathSciNet  MATH  Google Scholar 

  12. S. Khoroshkin and S. Pakuliak, “A computation of an universal weight function or the quantum affine algebra \(U_q( \mathfrak{gl} (N))\),” J. Math. Kyoto Univ., 48, 277–321 (2008); arXiv:0711.2819v2 [math.QA] (2011).

    MathSciNet  MATH  Google Scholar 

  13. S. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Bethe vectors of quantum integrable models based on \(U_q( \widehat { \mathfrak{gl} }(N)\),” J. Phys. A, 47, 105202 (2014); arXiv:1310.3253v1 [math-ph] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, and N. A. Slavnov, “Current presentation for the super-Yangian double \(DY( \mathfrak{gl} (m|n))\) and Bethe vectors,” Russian Math. Surveys, 72, 33–99 (2017); arXiv:1611.09620v2 [math-ph] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Enriquez, S. Khoroshkin, and S. Pakuliak, “Weight functions and Drinfeld currents,” Commun. Math. Phys., 276, 691–725 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Liashyk and S. Z. Pakuliak, “Gauss coordinates vs currents for the Yangian doubles of the classical types,” arXiv:2006.01579v3 [math-ph] (2020).

  17. D. Karakhanyanan and R. Kirschner, “Spinorial \(R\) operator and algebraic Bethe ansatz,” Nucl. Phys. B, 951, 114905 (2020); arXiv:1911.08385v1 [math-ph] (2019).

    Article  MathSciNet  Google Scholar 

  18. A. Gerrard and V. Regelskis, “Nested algebraic Bethe ansatz for orthogonal and symplectic open spin chains,” Nucl. Phys. B, 952, 114909 (2020); arXiv:1909.12123v1 [math-ph] (2019).

    Article  MathSciNet  Google Scholar 

  19. A. Gerrard and V. Regelskis, “Nested algebraic Bethe ansatz for deformed orthogonal and symplectic spin chains,” Nucl. Phys. B, 956, 115021 (2020); arXiv:1912.11497v2 [math-ph] (2019).

    Article  MathSciNet  Google Scholar 

  20. A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Bethe vectors for orthogonal integrable models,” Theor. Math. Phys., 201, 1545–1564 (2019); arXiv:1906.03202v1 [math-ph] (2019).

    Article  MathSciNet  Google Scholar 

  21. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Actions of the monodromy matrix elements onto \( \mathfrak{gl} (m|n)\)-invariant Bethe vectors,” arXiv:2005.09249v1 [math-ph] (2020).

  22. A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, “Scalar products of Bethe vectors in the models with \( \mathfrak{gl} (m|n)\) symmetry,” Nucl. Phys. B, 923, 277–311 (2017); arXiv:1704.08173v3 [math-ph] (2017).

    Article  ADS  Google Scholar 

  23. A. Liashyk, S. Z. Pakuliak, E. Ragoucy, and N. A. Slavnov, “New symmetries of \( \mathfrak{gl} (N)\)-invariant Bethe vectors,” J. Stat. Mech., 2019, 044001 (2019).

    Article  MathSciNet  Google Scholar 

  24. S. Belliard, S. Z. Pakuliak, and E. Ragoucy, “Universal Bethe ansatz and scalar products of Bethe vectors,” SIGMA, 6, 094 (2010); arXiv:1012.1455v2 [math-ph] (2010).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank E. Ragoucy and N. A. Slavnov for the fruitful discussions.

Funding

This research was performed at the Skolkovo Institute of Science and Technology under a grant from the Russian Science Foundation (Project No. 19-11-00275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Pakuliak.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liashyk, A., Pakuliak, S.Z. Algebraic Bethe ansatz for \(\mathfrak o_{2n+1}\)-invariant integrable models. Theor Math Phys 206, 19–39 (2021). https://doi.org/10.1134/S0040577921010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921010025

Keywords

Navigation