Skip to main content
Log in

Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to the proper-time method and describes a model case that reflects the subtleties of constructing the heat kernel, is easily extended to more general cases (curved space, manifold with a boundary), and contains two interrelated parts: an asymptotic expansion and a path integral representation. We discuss the significance of gauge conditions and the role of ordered exponentials in detail, derive a new nonrecursive formula for the Seeley–DeWitt coefficients on the diagonal, and show the equivalence of two main approaches using the exponential formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Fock, “Die Eigenzeit in der klassischen und in der Quantenmechanik,” Phys. Z. Sowjetunion, 12, 404–425 (1937).

    MATH  Google Scholar 

  2. Y. Nambu, “The use of the proper time in quantum electrodynamics I,” Progr. Theor. Phys., 5, 82–94 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., 82, 664–679 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York (1965).

    MATH  Google Scholar 

  5. B. S. DeWitt, “Quantum theory of gravity: I. The canonical theory,” Phys. Rev., 160, 1113–1148 (1967).

    Article  ADS  MATH  Google Scholar 

  6. B. S. DeWitt, “Quantum theory of gravity: II. The manifestly covariant theory,” Phys. Rev., 162, 1195–1239 (1967).

    Article  ADS  MATH  Google Scholar 

  7. B. S. DeWitt, “Quantum theory of gravity: III. Applications of the covariant theory,” Phys. Rev., 162, 1239–1256 (1967).

    Article  ADS  MATH  Google Scholar 

  8. B. S. DeWitt, “Quantum field theory in curved spacetime,” Phys. Rep., 19, 295–357 (1975).

    Article  ADS  Google Scholar 

  9. R. T. Seeley, “Singular integrals and boundary value problems,” Amer. J. Math., 88, 781–809 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. T. Seeley, “Complex powers of an elliptic operator,” in: Singular Integrals (Proc. Symp. Pure Math., Vol. 10, P. Calderón, ed.), Amer. Math. Soc., Providence, R. I. (1967), pp. 288–307.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. T. Seeley, “The resolvent of an elliptic boundary value problem,” Amer. J. Math., 91, 889–920 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. B. Gilkey, “The spectral geometry of a Riemannian manifold,” J. Differ. Geom., 10, 601–618 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Schwinger, “Casimir effect in source theory,” Lett. Math. Phys., 1, 43–47 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Bordag, U. Mohideen, and V. M. Mostepanenko, “New developments in the Casimir effect,” Phys. Rept., 353, 1–205 (2001); arXiv:quant-ph/0106045 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. D. Ball, “Chiral gauge theory,” Phys. Rept., 182, 1–186 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Callan and F. Wilczek, “On geometric entropy,” Phys. Lett. B, 333, 55–61 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Jack and H. Osborn, “Two-loop background field calculations for arbitrary background fields,” Nucl. Phys. B, 207, 474–504 (1982).

    Article  ADS  Google Scholar 

  18. J. P. Börnsen and A. E. M. van de Ven, “Three-loop Yang–Mills \(\beta\)-function via the covariant background field method,” Nucl. Phys. B, 657, 257–303 (2003); arXiv:hep-th/0211246 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. F. Atiyah and I. M. Singer, “The index of elliptic operators on compact manifolds,” Bull. Amer. Math. Soc., 69, 422–433 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. K. Patodi, “Curvature and the eigenforms of the Laplace operator,” J. Differ. Geom., 5, 233–249 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  21. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC, Boca Raton, Fla. (1994).

    Google Scholar 

  22. H. P. McKean Jr. and I. M. Singer, “Curvature and the eigenvalues of the Laplacian,” J. Differ. Geom., 1, 43–69 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. M. McAvity and H. Osborn, “A DeWitt expansion of the heat kernel for manifolds with a boundary,” Class. Quantum Grav., 8, 603–638 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. D. M. McAvity and H. Osborn, “Asymptotic expansion of the heat kernel for generalized boundary conditions,” Class. Quantum Grav., 8, 1445–1454 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. M. McAvity, “Heat kernel asymptotics for mixed boundary conditions,” Class. Quantum Grav., 9, 1983–1997 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. O. Barvinsky, Yu. V. Gusev, V. F. Mukhanov, and D. V. Nesterov, “Nonperturbative late time asymptotics for heat kernel in gravity theory,” Phys. Rev. D, 68, 105003 (2003); arXiv:hep-th/0306052 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Bordag and D. V. Vassilevich, “Heat kernel expansion for semitransparent boundaries,” J. Phys. A: Math. Gen., 32, 8247–8259 (1999); arXiv:hep-th/9907076 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D. V. Vassilevich, “Index theorems and domain walls,” JHEP, 1807, 108 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. K. Kirsten, “Heat kernel asymptotics: More special case calculations,” Nucl. Phys. B Proc. Suppl., 104, 119–126 (2002); arXiv:hep-th/0108004 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  30. D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rep., 388, 279–360 (2003); arXiv:hep-th/0306138 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. R. P. Feynman, “Space–time approach to non-relativistic quantum mechanics,” Rev. Modern Phys., 20, 367–387 (1948).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. R. P. Feynman, “The theory of positrons,” Phys. Rev., 76, 749–759 (1949).

    Article  ADS  MATH  Google Scholar 

  33. M. Ludewig, “Heat kernels as path integrals,” arXiv:1810.07898 (2018).

  34. F. Bastianelli, O. Corradini, and P. A. G. Pisani, “Worldline approach to quantum field theories on flat manifolds with boundaries,” JHEP, 0702, 059 (2007); arXiv:hep-th/0612236 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  35. J. R. Norris, “Path integral formulae for heat kernels and their derivatives,” Probab. Theory Related Fields, 94, 525–541 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  36. J. S. Dowker and R. Critchley, “Effective Lagrangian and energy momentum tensor in de Sitter space,” Phys. Rev. D, 13, 3224–3232 (1976).

    Article  ADS  Google Scholar 

  37. S. W. Hawking, “Zeta function regularization of path integrals in curved spacetime,” Commun. Math. Phys., 55, 133–148 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. A. Bytsenko, G. Cognola, L. Vanzo, and S. Zerbini, “Quantum fields and extended objects in space–times with constant curvature spatial section,” Phys. Rep., 266, 1–126 (1996); arXiv:hep-th/9505061 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Amsterdamski, A. L. Berkin, and D. J. O’Connor, “\(b_8\) ‘Hamidew’ coefficient for a scalar field,” Class. Quantum Grav., 6, 1981–1991 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. I. G. Avramidi, “The covariant technique for the calculation of the heat kernel asymptotic expansion,” Phys. Lett. B, 238, 92–97 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. E. M. van de Ven, “Index-free heat kernel coefficients,” Class. Quantum Grav., 15, 2311–2344 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S. A. Fulling and G. Kennedy, “The resolvent parametrix of the general elliptic linear differential operator: A closed form for the intrinsic symbol,” Trans. Amer. Math. Soc., 310, 583–617 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  43. A. V. Ivanov, “Diagram technique for the heat kernel of the covariant Laplace operator,” Theor. Math. Phys. (2019), 198, 100–117; arXiv:1905.05455 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  44. A. O. Barvinsky and G. A. Vilkovisky, “Beyond the Schwinger–DeWitt technique: Converting loops into trees and in–in currents,” Nucl. Phys. B, 282, 163–188 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  45. A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory (II): Second order in the curvature. General algorithms,” Nucl. Phys. B, 333, 471–511 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  46. A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory (III): Spectral representations of the third-order form factors,” Nucl. Phys. B, 333, 512–524 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  47. I. G. Avramidi, Heat Kernel and Quantum Qravity (Lect. Notes Phys., Vol. 64), Springer, Berlin (2000).

    Book  MATH  Google Scholar 

  48. A. V. Ivanov, “About renormalization of the Yang–Mills theory and the approach to calculation of the heat kernel,” EPJ Web Conf., 158, 07004 (2017).

    Article  Google Scholar 

  49. A. V. Ivanov, “On the application of matrix formalism of heat kernel to the number theory,” J. Math. Sci. (N. Y.), 242, 683–691 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  50. J. S. Dowker and K. Kirsten, “Heat-kernel coefficients for oblique boundary conditions,” Class. Quantum Grav., 14, L169–L175 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. J. S. Dowker and K. Kirsten, “The \(a_{3/2}\) heat kernel coefficient for oblique boundary conditions,” Class. Quantum Grav., 16, 1917–1936 (1999); arXiv:hep-th/9806168 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. I. G. Avramidi and G. Esposito, “New invariants in the 1-loop divergences on manifolds with boundary,” Class. Quantum Grav., 15, 281–297 (1998); arXiv:hep-th/9701018 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1978); English transl.: L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction To Quantum Theory (Frontiers Phys., Vol. 50), Benjamin/Cummings, Reading, Mass. (1980).

    Google Scholar 

  54. S. P. Novikov and I. A. Taimanov, Modern Geometric Structures and Fields [in Russian], MTsNMO, Moscow (2005); English transl. (Grad. Stud. Math., Vol. 71), Amer. Math. Soc., Providence, R. I. (2006).

    Google Scholar 

  55. A. M. Polyakov, Gauge Fields and Strings [in Russian], Udmurtskii Univ., Izhevsk (1999); English transl. (Contemp. Concepts Phys., Vol. 3), Harwood Academic, Chur (1987).

    MATH  Google Scholar 

  56. P. A. J. Liggatt and A. J. Macfarlane, “Phase factors and point splitting for non-Abelian gauge theories,” J. Phys. G, 4, 633–645 (1978).

    Article  ADS  Google Scholar 

  57. G. M. Shore, “Symmetry restoration and the background field method in gauge theories,” Ann. Phys., 137, 262–305 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Lüscher, “Dimensional regularisation in the presence of large background fields,” Ann. Phys., 142, 359–392 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  59. B. K. Skagerstam, “A note on the Poincaré gauge,” Amer. J. Phys., 51, 1148–1149 (1983).

    Article  ADS  Google Scholar 

  60. J. D. Jackson, “From Lorenz to Coulomb and other explicit gauge transformations,” Amer. J. Phys., 70, 917–928 (2002); arXiv:physics/0204034 (2002).

    Article  ADS  Google Scholar 

  61. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981); English transl., Mir, Moscow (1983).

    Google Scholar 

  62. L. A. Takhtajan, Quantum Mechanics for Mathematicians [in Russian], NITs Regulyarnaya i Khaoticheskaya Dinamika, Moscow (2011); English transl. prev. ed. (Grad. Series Math. Vol. 95), Amer. Math. Soc., Providence, R. I. (2008).

    MATH  Google Scholar 

  63. K. Kirsten and A. J. McKane, “Functional determinants in the presence of zero modes,” in: Quantum Field Theory Under the Influence of External Conditions (QFEXT03) (University of Oklahoma, Norman, Oklahoma, USA, 15–19 September 2003, K. Milton, ed.), Rinton, Princeton, N. J. (2004), pp. 146–151; arXiv:hep-th/0507005 (2005).

    Google Scholar 

  64. D. Fursaev and D. V. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory, Springer, Dordrecht (2011).

    Book  MATH  Google Scholar 

  65. A. V. Ivanov and N. V. Kharuk, “Non-recursive formula for trace of heat kernel,” in: 2019 Days on Diffraction (DD) (St. Petersburg, Russia, 3–7 June 2019), IEEE, New York (2019), pp. 74–77.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. G. Pronko for the discussion of the text.

Funding

This research was supported by a grant from the Russian Science Foundation (Project No. 18-11-00297).

A. V. Ivanov is a winner of the Young Russian Mathematician award and thanks its sponsors and jury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Kharuk, N.V. Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line. Theor Math Phys 205, 1456–1472 (2020). https://doi.org/10.1134/S0040577920110057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920110057

Keywords

Navigation