Skip to main content

Mathematical Aspects of Feynman Path Integrals, Divergences, Quantum Fields and Diagrams, and Some More General Reflections

  • Chapter
  • First Online:
When Form Becomes Substance
  • 365 Accesses

Abstract

Feynman path integrals are first presented for the case of non-relativistic quantum mechanics, both in physical and mathematical terms. Then the case of scalar relativistic and Euclidean quantum fields is discussed, with a particular consideration of the mathematical problems arising when discussing interactions as non-linear functionals of the fields. The methods of (constructive) perturbation theory and renormalization theory in relation to Feynman path integrals are briefly discussed, in particular mentioning the visual help provided by Feynman diagrams. The paper ends with mentioning some open problems and presenting some philosophical remarks and reflections on the description of natural phenomena, in particular those of fundamental physics, in mathematical terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Albeverio. Felder und quantenfelder – spekulation und wissenschaft. In T. Fischer and R. Seising, editors, Spekulation und Wissenschaft, pages 43–51. Verlag Dr. Kovač, 1995.

    Google Scholar 

  • S. Albeverio. Wiener and Feynman—path integrals and their applications. In Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), volume 52 of Proc. Sympos. Appl. Math., pages 163–194. Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  • S. Albeverio. Il limite come problema – scienza e realtà. 2018. In preparation.

    Google Scholar 

  • S. Albeverio and T. Arede. The relation between quantum mechanics and classical mechanics: A survey of some mathematical aspects. In G. Casati, editor, Chaotic Behavior in Quantum Systems – Theory and Applications, volume 120 of Nato Science Series B, pages 37–76. Plenum Press, New York, 1985.

    Google Scholar 

  • S. Albeverio, P. Blanchard, and R. Høegh-Krohn. Feynman path integrals and the trace formula for the Schrödinger operators. Communications in Mathematical Physics, 83(1):49–76, 1982.

    Article  Google Scholar 

  • S. Albeverio, A. Boutet de Monvel-Berthier, and Z. Brzeźniak. The trace formula for Schrödinger operators from infinite-dimensional oscillatory integrals. Mathematische Nachrichten, 182:21–65, 1996.

    Article  Google Scholar 

  • S. Albeverio, N. Cangiotti, and S. Mazzucchi. On the mathematical definition of Feynman path integrals for the Schrödinger equation with magnetic field. Communications in Mathematical Physics 377:1461–1503, 2020..

    Google Scholar 

  • S. Albeverio, N. Cangiotti, and S. Mazzucchi. Generalized Feynman path integrals and applications to higher-order heat-type equations. Expositiones Mathematicae, 2018. submitted.

    Google Scholar 

  • S. Albeverio, A. B. Cruzeiro, and D. Holm, editors. Stochastic geometric mechanics, volume 202 of Springer Proceedings in Mathematics & Statistics. Springer, Cham, 2017. Papers from the Research Semester “Geometric Mechanics—Variational and Stochastic Methods” held at the Centre Interfacultaire Bernoulli (CIB), Ecole Polytechnique Fédérale de Lausanne, Lausanne, January–June, 2015.

    Google Scholar 

  • S. Albeverio, P. Giordano, and F. Minazzi, editors. Il problema dei fondamenti oggi, volume 14–15 of PRISTEM/Storia - Note di Matematica, Storia e Cultura. Centro di ricerca PRISTEM dell’Università Bocconi di Milano, 2006.

    Google Scholar 

  • S. Albeverio, A. Hahn, and A. N. Sengupta. Chern-Simons theory, Hida distributions, and state models. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(suppl.):65–81, 2003.

    Google Scholar 

  • S. Albeverio, R. Hø egh Krohn, J. E. Fenstad, and T. Lindstrø m. Nonstandard methods in stochastic analysis and mathematical physics, volume 122 of Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.

    Google Scholar 

  • S. Albeverio and R. Høegh-Krohn. Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics I. Inventiones Mathematicae, 40(1):59–106, feb 1977.

    Google Scholar 

  • S. Albeverio, J. Jost, S. Paycha, and S. Scarlatti. A mathematical introduction to string theory, volume 225 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1997. Variational problems, geometric and probabilistic methods.

    Google Scholar 

  • S. Albeverio and S. Kusuoka. The invariant measure and the flow associated to the \(\phi ^{4}_{3}\)-quantum field. Annali della Scuola Normale Superiore di Pisa – Classe die Scienze, (5), 20(4):1359–1427, 2020.

    Google Scholar 

  • S. Albeverio and S. Mazzucchi. Feynman path integrals for polynomially growing potentials. Journal of Functional Analysis, 221(1):83–121, 2005.

    Article  Google Scholar 

  • S. Albeverio and S. Mazzucchi. The time-dependent quartic oscillator—a Feynman path integral approach. Journal of Functional Analysis, 238(2):471–488, 2006.

    Article  Google Scholar 

  • S. Albeverio and S. Mazzucchi. A survey on mathematical Feynman path integrals: construction, asymptotics, applications. In Quantum field theory, pages 49–66. Birkhäuser, Basel, 2009.

    Google Scholar 

  • S. Albeverio and S. Mazzucchi. A unified approach to infinite-dimensional integration. Reviews in Mathematical Physics, 28(02):1650005, mar 2016.

    Google Scholar 

  • S. Albeverio, S. Mazzucchi, and Z. Brzeźniak. Probabilistic integrals: mathematical aspects. Scholarpedia, 12(5):10429, 2017.

    Google Scholar 

  • S. Albeverio and A. Sengupta. A mathematical construction of the non-abelian Chern-Simons functional integral. Communications in Mathematical Physics, 186(3):563–579, 1997.

    Article  Google Scholar 

  • S. Albeverio and H. Tetens. Some remarks on pragmatism, mathematics and some recent debates on science and culture. In M. Carrier, J. Roggenhofer, G. Küppers, and P. Blanchard, editors, Knowledge and the World: Challenges Beyond the Science Wars, The Frontiers Collection, pages 98–104. Springer-Verlag Berlin Heidelberg, 2004.

    Google Scholar 

  • S. Albeverio, F. C. D. Vecchi, P. Morando, and S. Ugolini. Symmetries and invariance properties of stochastic differential equations driven by semimartingales with jumps. 2017. arXiv preprint: 1708.01764v1.

    Google Scholar 

  • S. A. Albeverio, R. J. Høegh-Krohn, and S. Mazzucchi. Mathematical theory of Feynman path integrals – An introduction, volume 523 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 2008.

    Book  Google Scholar 

  • M. Atiyah, A. Borel, G. J. Chaitin, D. Friedan, J. Glimm, J. J. Gray, M. W. Hirsch, S. M. Lane, B. B. Mandelbrot, D. Ruelle, A. Schwarz, K. Uhlenbeck, R. Thom, E. Witten, and S. C. Zeeman. Responses to “Theoretical mathematics: Toward a cultural synthesis of mathematics and theoretical physics”, by A. Jaffe and F. Quinn. Bulletin of the American Mathematical Society, 30(2):178–208, apr 1994.

    Google Scholar 

  • M. F. Atiyah. Geometry on Yang-Mills fields. Scuola Normale Superiore Pisa, Pisa, 1979.

    Google Scholar 

  • J. C. Baez and J. Dolan. From finite sets to Feynman diagrams. In B. Engquist and W. Schmid, editors, Mathematics Unlimited – 2001 and Beyond, pages 29–50. Springer Berlin Heidelberg, 2001.

    Chapter  Google Scholar 

  • D. Bahns, S. Doplicher, G. Morsella, and G. Piacitelli. Quantum spacetime and algebraic quantum field theory. In Advances in algebraic quantum field theory, Math. Phys. Stud., pages 289–329. Springer, Cham, 2015.

    Google Scholar 

  • P. Blanchard, J. Fröhlich, and B. Schubnel. A “garden of forking paths”—the quantum mechanics of histories of events. Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 912:463–484, 2016.

    Google Scholar 

  • L. Boi. The quantum vacuum. Johns Hopkins University Press, Baltimore, MD, 2011. A scientific and philosophical concept, from electrodynamics to string theory and the geometry of the microscopic world.

    Google Scholar 

  • L. Boi, P. Kerszberg, and F. Patras, editors. Rediscovering Phenomenology. Springer Netherlands, 2007.

    Google Scholar 

  • R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, Journal of Mathematics and Physics 39:126–140, 1960.

    Article  Google Scholar 

  • P. Cartier and C. DeWitt-Morette. Functional integration: action and symmetries. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 2006. Appendix D contributed by Alexander Wurm.

    Google Scholar 

  • S. Chatterjee. Convergence of the Feynman path integral. In preparation.

    Google Scholar 

  • G. Da Prato and A. Debussche. Strong solutions to the stochastic quantization equations. The Annals of Probability, 31(4):1900–1916, 2003.

    Article  Google Scholar 

  • G. Da Prato and L. Tubaro. Wick powers in stochastic PDEs: an introduction. Last checked: 24th September 2018, 07:59 UTC.

    Google Scholar 

  • I. Daubechies, J. R. Klauder, and T. Paul. Wiener measures for path integrals with affine kinematic variables. Journal of Mathematical Physics, 28(1):85–102, 1987.

    Article  Google Scholar 

  • H. Doss. Sur une résolution stochastique de l’équation de Schrödinger à coefficients analytiques. Communications in Mathematical Physics, 73(3):247–264, 1980.

    Article  Google Scholar 

  • B. Dragovich. p-adic and adelic quantum mechanics. Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossiĭskaya Akademiya Nauk, 245(Izbr. Vopr. p-adich. Mat. Fiz. i Anal.):72–85, 2004.

    Google Scholar 

  • D. Dürr, S. Goldstein, and Zanghì. Quantum physics without quantum philosophy. Springer, Heidelberg, 2013.

    Google Scholar 

  • D. Dürr and S. Teufel. Bohmian mechanics. Springer-Verlag, Berlin, 2009. The physics and mathematics of quantum theory.

    Google Scholar 

  • K. Ebrahimi-Fard, F. Patras, N. Tapia, and L. Zambotti. Hopf-algebraic deformations of products and Wick polynomials.

    Google Scholar 

  • D. Elworthy and A. Truman. Feynman maps, Cameron-Martin formulae and anharmonic oscillators. Annales de l’Institut Henri Poincaré. Physique Théorique, 41(2):115–142, 1984.

    Google Scholar 

  • R. Feynman and A. Hibbs. Quantum Mechanics and Path Integrals. Dover, Mineola, NY, 2010.

    Google Scholar 

  • R. P. Feynman. Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics, 20(2):367–387, apr 1948.

    Google Scholar 

  • R. P. Feynman. The principle of least action in quantum mechanics. In Feynman’s Thesis – A New Approach to Quantum Theory, pages 1–69. World Scientific, aug 2005. Originally published in 1942 at Princeton University.

    Google Scholar 

  • D. Fujiwara. Rigorous time slicing approach to Feynman path integrals. Mathematical Physics Studies. Springer, Tokyo, 2017.

    Google Scholar 

  • J. Glimm and A. Jaffe. Quantum physics – A functional integral point of view. Springer-Verlag, New York, second edition, 1987.

    Google Scholar 

  • M. Grothaus and F. Riemann. A fundamental solution to the Schrödinger equation with Doss potentials and its smoothness. Journal of Mathematical Physics, 58(5):053506, 25, 2017.

    Google Scholar 

  • M. Grothaus, L. Streit, and A. Vogel. The complex scaled Feynman-Kac formula for singular initial distributions. Stochastics. An International Journal of Probability and Stochastic Processes, 84(2-3):347–366, 2012.

    Article  Google Scholar 

  • M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and singular PDEs. Forum of Mathematics. Pi, 3:e6, 75, 2015.

    Google Scholar 

  • M. Gubinelli, H. Koch, and T. Oh. Renormalization of the two-dimensional stochastic nonlinear wave equation. Transactions of the American Mathematical Society, 2018. to appear.

    Google Scholar 

  • M. Gubinelli and M. Hofmanová. A PDE construction of the Euclidean \(\varphi _3^4\) quantum field theory, Communication of Mathematical Physics 384(1):1–75 2021.

    Google Scholar 

  • M. Hairer. A theory of regularity structures. Inventiones Mathematicae, 198(2):269–504, 2014.

    Article  Google Scholar 

  • B. Heintz. Die Innenwelt der Mathematik. Ästhetik und Naturwissenschaften. Bildende Wissenschaften—Zivilisierung der Kulturen. [Aesthetics and Sciences. Artistic Sciences—Civilization of Cultures]. Springer-Verlag, Vienna, 2000. Zur Kultur und Praxis einer beweisenden Disziplin. [On the culture and practice of a discipline based on proofs].

    Google Scholar 

  • F. S. Herzberg. Stochastic calculus with infinitesimals, volume 2067 of Lecture Notes in Mathematics. Springer, Heidelberg, 2013.

    Google Scholar 

  • T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit. White noise, volume 253 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993. An infinite-dimensional calculus.

    Google Scholar 

  • L. Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)].

    Google Scholar 

  • D. Jacquette, editor. Philosophy of mathematics, volume 15 of Blackwell Philosophy Anthologies. Blackwell Publishers Limited, Oxford, 2002. An anthology.

    Google Scholar 

  • A. Jaffe and F. Quinn. “Theoretical mathematics”: Toward a cultural synthesis of mathematics and theoretical physics. Bulletin of the American Mathematical Society, 29(1):1–14, nov 1993.

    Google Scholar 

  • A. Jaffe and F. Quinn. Response to comments on “Theoretical mathematics”. Bulletin of the American Mathematical Society, 30(2):208–212, apr 1994.

    Google Scholar 

  • G. W. Johnson and M. L. Lapidus. The Feynman integral and Feynman’s operational calculus. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications.

    Google Scholar 

  • R. Jost. Foundations of quantum field theory. In K. Hepp, W. Hunziker, and W. Kohn, editors, Das Märchen vom Elfenbeinernen Turm, volume 34 of Lecture Notes in Physics Monographs. Springer-Verlag Berlin Heidelberg, 1995.

    Google Scholar 

  • V. N. Kolokoltsov. Semiclassical analysis for diffusions and stochastic processes, volume 1724 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.

    Google Scholar 

  • Ø. Linnebo. Philosophy of mathematics. Princeton Foundations of Contemporary Philosophy. Princeton University Press, Princeton, NJ, 2017.

    Book  Google Scholar 

  • G. Lolli. Filosofia della matematica. L’eredità del Novecento. Il Mulino, 2002.

    Google Scholar 

  • S. Mazzucchi. Mathematical Feynman path integrals and their applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.

    Book  Google Scholar 

  • H. Mehrtens. Moderne—Sprache—Mathematik. Suhrkamp Verlag, Frankfurt am Main, 1990. Eine Geschichte des Streits um die Grundlagen der Disziplin und des Subjekts formaler Systeme. [A history of the controversy surrounding the foundations of the discipline and the subject of formal systems].

    Google Scholar 

  • E. Nelson. Feynman integrals and the Schrödinger equation. Journal of Mathematical Physics, 5(3):332–343, mar 1964.

    Google Scholar 

  • E. Nelson. Forma matematica e realtà fisica. In S. Albeverio, G. Casati, and D. Merlini, editors, Stochastic Processes in Classical and Quantum Systems, volume 262 of Lecture Notes in Physics, pages 545–550. Springer Berlin Heidelberg, 1986.

    Chapter  Google Scholar 

  • E. Nelson. Stochastic mechanics and random fields. In École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages 427–450. Springer, Berlin, 1988.

    Google Scholar 

  • E. Nelson. Sintassi e semantica. In S. Albeverio, P. Giordano, and F. Minazzi, editors, Il problema dei fondamenti oggi, volume 14–15 of PRISTEM/Storia - Note di Matematica, Storia e Cultura, pages 51–59. Centro di ricerca PRISTEM dell’Università Bocconi di Milano, 2006.

    Google Scholar 

  • R. Penrose. The road to reality. Alfred A. Knopf, Inc., New York, 2005. A complete guide to the laws of the universe.

    Google Scholar 

  • G. Roepstorff. Path integral approach to quantum physics. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1994. An introduction.

    Google Scholar 

  • C. Rovelli. Quantum gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 2004. With a foreword by James Bjorken.

    Google Scholar 

  • R. Schmidt. Arithmetic gravity and Yang-Mills theory: An approach to adelic physics via algebraic spaces. Ph.D. Thesis, WWU Münster (2008), arXiv: 0809.3579v1[hep-th].

    Google Scholar 

  • I. E. Segal. Mathematical cosmology and extragalactic astronomy. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Pure and Applied Mathematics, Vol. 68.

    Google Scholar 

  • B. Simon. TheP(ϕ)2Euclidean (quantum) field theory. Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics.

    Google Scholar 

  • H. Thaler. The Doss trick on symmetric spaces. Letters in Mathematical Physics, 72(2):115–127, 2005.

    Article  Google Scholar 

  • T. Triplett. Relativism and the sociology of mathematics: Remarks on Bloor, Flew, and Frege. Inquiry, 29(1-4):439–450, jan 1986.

    Google Scholar 

  • R. L. Wilder. Mathematics as a cultural system. Pergamon Press, Oxford-Elmsford, N.Y., 1981. Foundations and Philosophy of Science and Technology Series.

    Google Scholar 

  • E. Witten. Dynamics of quantum field theory. In P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and E. Witten, editors, Quantum fields and strings: a course for mathematicians, pages 1119–1424. American Mathematical Society, Providence, RI, 1999a.

    Google Scholar 

  • E. Witten. Homework. In P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and E. Witten, editors, Quantum fields and strings: a course for mathematicians, pages 609–717. American Mathematical Society, Providence, RI, 1999b.

    Google Scholar 

  • E. Witten. Index of Dirac operators. In P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and E. Witten, editors, Quantum fields and strings: a course for mathematicians, pages 475–511. American Mathematical Society, Providence, RI, 1999c.

    Google Scholar 

  • E. Witten. Perturbative quantum field theory. In P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and E. Witten, editors, Quantum fields and strings: a course for mathematicians, pages 419–473. American Mathematical Society, Providence, RI, 1999d.

    Google Scholar 

Download references

Acknowledgements

I would like to thank all organizers, and in particular Luciano Boi for having given me the opportunity and challenge to speak to a truly interdisciplinary and philosophically oriented audience. The financial and logistic support of the Collège International de Philosophie, Paris, is also gratefully acknowledged, as well as the technical support by Timo Weiß, University of Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Albeverio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albeverio, S. (2022). Mathematical Aspects of Feynman Path Integrals, Divergences, Quantum Fields and Diagrams, and Some More General Reflections. In: Boi, L., Lobo, C. (eds) When Form Becomes Substance. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-83125-7_9

Download citation

Publish with us

Policies and ethics