Skip to main content
Log in

Discrete Crum’s Theorems and Lattice KdV-Type Equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop Darboux transformations (DTs) and their associated Crum’s formulas for two Schrödinger-type difference equations that are themselves discretized versions of the spectral problems of the KdV and modified KdV equations. With DTs viewed as a discretization process, classes of semidiscrete and fully discrete KdV-type systems, including the lattice versions of the potential KdV, potential modified KdV, and Schwarzian KdV equations, arise as the consistency condition for the differential/difference spectral problems and their DTs. The integrability of the underlying lattice models, such as Lax pairs, multidimensional consistency, τ-functions, and soliton solutions, can be easily obtained by directly applying the discrete Crum’s formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Darboux, “Sur une proposition relative aux equations lineaires,” C. R. Acad. Sci. Paris, 94, 1456–1459 (1882).

    MATH  Google Scholar 

  2. M. M. Crum, “Associated Sturm—Liouville systems,” Quart. J. Math., 6, 121–127 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  3. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    Book  Google Scholar 

  4. A. B. Shabat, “Dressing chains and lattices,” in: Nonlinearity, Integrability, and All That: Twenty Years After NEEDS’79 (Lecce, Italy, 1–10 July 1999, M. Boiti, L. Martina, F. Pempinelly, B. Prinary, and G. Soliani, eds.), World Scientific, Singapore (2000), pp. 341–342.

    Google Scholar 

  5. D. Levi and R. Benguria, “Bäcklund transformations and nonlinear differential difference equations,” Proc. Nat. Acad. Sci. USA, 77, 5025–5027 (1980).

    Article  ADS  Google Scholar 

  6. D. Levi, “Nonlinear differential difference equations as Bäcklund transformations,” J. Phys. A: Math. Gen., 14, 1083–1098 (1981).

    Article  ADS  Google Scholar 

  7. V. B. Matveev, “Darboux transformation and the explicit solutions of differential—difference and difference—difference evolution equations I,” Lett. Math. Phys., 3, 217–222 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. B. Matveev, “Darboux transformation and explicit solutions of the Kadomtsev—Petviashvili equation, depending on functional parameters,” Lett. Math. Phys., 3, 213–216 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. Spiridonov and A. Zhedanov, “Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey—Wilson polynomials,” Meth. Appl. Anal., 369–398 (1995).

  10. J. J. C. Nimmo and R. Willox, “Darboux transformations for the two-dimensional Toda system,” Proc. Roy. Soc. London Ser. A, 453, 2497–2525 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. J. C. Nimmo, “Darboux transformations and the discrete KP equation,” J. Phys. A: Math. Gen., 30, 8693–9704 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds,” in: Random Systems and Dynamical Systems (Kyoto, 7–9 January 1981, RIMS Kôkyûroku, Vol. 439), Kyoto Univ., Kyoto (1981), pp. 30–46.

    Google Scholar 

  13. T. Ohta, J. Satsuma, D. Takahashi, and T. Tokihiro, “An elementary introduction to Sato theory,” Prog. Theor. Phys. Suppl., 94, 210–241 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  14. T. Miwa, M. Jimbo, and E. Date, Solitons: Differential Equations, Symmetries, and Infinite Dimensional Algebras (Cambridge Tracts in Mathematics, Vol. 135), Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  15. F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever—Novikov) system,” Phys. Lett. A, 297, 49–58 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. I. Bobenko and Yu. B. Suris, “Integrable systems on quad-graphs,” Int. Math. Res. Notices, 2002, 573–611 (2002).

    Article  MathSciNet  Google Scholar 

  17. J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge (2016).

    Book  Google Scholar 

  18. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Classification of integrable equations on quad-graphs: The consistency approach,” Commun. Math. Phys., 233, 513–543 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, “Discrete nonlinear hyperbolic equations: Classification of integrable cases,” Funct. Anal. Appl., 43, 3–17 (2009).

    Article  MathSciNet  Google Scholar 

  20. F. W. Nijhoff, J. Atkinson, and J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach,” J. Phys. A: Math. Theor., 42, 404005 (2009).

    Article  MathSciNet  Google Scholar 

  21. J. Hietarinta and D. J. Zhang, “Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization,” J. Phys. A: Math. Theor., 42, 404006 (2009).

    Article  MathSciNet  Google Scholar 

  22. E. Schrödinger, “A method of determining quantum-mechanical eigenvalues and eigenfunctions,” Proc. Roy. Irish Acad. Sect. A, 46, 9–16 (1940).

    MathSciNet  MATH  Google Scholar 

  23. L. Infeld and T. E. Hull, “The factorization method,” Rev. Modern Phys., 23, 21–68 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  24. F. W. Nijhoff and H. Capel, “The discrete Korteweg—de Vries equation,” Acta Appl. Math., 39, 133–158 (1995).

    Article  MathSciNet  Google Scholar 

  25. Q. P. Liu and Y. Q. Wang, “A note on a discrete Schrödinger spectral problem and associated evolution equations,” Acta Math. Sci. Ser. A, 26, 773–777 (2006).

    MathSciNet  MATH  Google Scholar 

  26. Y. Shi, J. J. C. Nimmo, and D.-J. Zhang, “Darboux and binary Darboux transformations for discrete integrable systems I: Discrete potential KdV equation,” J. Phys. A: Math. Theor., 47, 025205 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Shi, J. J. C. Nimmo, and J. X. Zhao, “Darboux and binary Darboux transformations for discrete integrable systems. II. Discrete potential mKdV equation,” SIGMA, 13, 036 (2017); arXiv:1705.09896v1 [nlin.SI] (2017).

    MathSciNet  MATH  Google Scholar 

  28. C.-W. Cao and G.-Y. Zhang, “Lax Pairs for discrete integrable equations via Darboux transformations,” Chinese Phys. Lett., 29, 050202 (2012).

    Article  ADS  Google Scholar 

  29. S. Konstantinou-Rizos, “Darboux transformations, discrete integrable systems, and related Yang—Baxter maps,” Doctoral dissertation, University of Leeds, Leeds, UK (2014); arXiv:1410.5013v1 [nlin.SI] (2014).

    MATH  Google Scholar 

  30. S. V. Smirnov, “Factorization of Darboux—Laplace transformations for discrete hyperbolic operators,” Theor. Math. Phys., 199, 621–636 (2019).

    Article  MathSciNet  Google Scholar 

  31. A. P. Fordy and J. Gibbons, “Factorization of operators: I. Miura transformations,” J. Math. Phys., 21, 2508–2510 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. P. Fordy and J. Gibbons, “Factorization of operators II,” J. Math. Phys., 22, 1170–1175 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Boiti, F. Pempinelli, B. Prinari, and A. Spire, “An integrable discretization of KdV at large times,” Inverse Probl., 17, 515–526 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Butler and N. Joshi, “An inverse scattering transform for the lattice potential KdV equation,” Inverse Probl., 26, 115012 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. N. Hone, “Exact discretization of the Ermakov—Pinney equation,” Phys. Lett. A, 263, 347–354 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. P. Veselov and A. B. Shabat, “Dressing chains and spectral theory of the Schrödinger operator,” Funct. Anal. Appl., 27, 81–96 (1993).

    Article  MathSciNet  Google Scholar 

  37. H. D. Wahlquist and F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg—de Vries equation,” Phys. Rev. Lett., 31, 1386–1390 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  38. C. A. Evripidou, P. H. van der Kamp, and C. Zhang, “Dressing the dressing chain,” SIGMA, 14, 059 (2018).

    MathSciNet  MATH  Google Scholar 

  39. R. Hirota, “Nonlinear partial difference equations: III. Discrete sine-Gordon equation,” J. Phys. Soc. Japan, 43, 2079–2086 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Dobrogowska and G. Jakimowicz, “Factorization method applied to the second order difference equations,” Appl. Math. Lett., 74, 161–166 (2017).

    Article  MathSciNet  Google Scholar 

  41. S. Odake and R. Sasaki, “Crum’s theorem for ‘discrete’ quantum mechanics,” Progr. Theor. Phys., 122, 1067–1079 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhang, Linyu Peng or Da-jun Zhang.

Additional information

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11601312, 11631007, and 11875040), the Shanghai Young Eastern Scholar program (2016–2019), the JSPS (Grant-in-Aid for Scientific Research No. 16KT0024), Waseda University (Special Research Project Nos. 2017K-170, 2019C-179, 2019E-036, and 2019R-081), and the MEXT Top Global University Project.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 202, No. 2, pp. 187–206, February, 2020.

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Peng, L. & Zhang, Dj. Discrete Crum’s Theorems and Lattice KdV-Type Equations. Theor Math Phys 202, 165–182 (2020). https://doi.org/10.1134/S0040577920020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920020038

Keywords

Navigation