Skip to main content
Log in

Estimates of the Deconfinement Temperature in ADS/QCD

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study various methods for estimating the deconfinement temperature in nondynamical bottom-up AdS/QCD models in detail. We show that although there are many different possibilities to define the holographic parameters, certain reasonable theoretical and phenomenological restrictions on holographic models lead to realistic and rather stable predictions for the range of temperatures in the deconfinement crossover region at small baryon densities. In particular, we argue that the most successful approach is to take the scalar glueball trajectory from lattice simulations as a basic input in an improved version of the soft-wall holographic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys., 2, 505–532 (1998); arXiv:hep-th/9803131v2 (1998).

    Article  MathSciNet  Google Scholar 

  2. C. P. Herzog, “Holographic prediction for the deconfinement temperature,” Phys. Rev. Lett., 98, 091601 (2007); arXiv:hep-th/0608151v3 (2006).

    Article  ADS  Google Scholar 

  3. J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, “QCD and a holographic model of hadron,” Phys. Rev. Lett., 95, 261602 (2005); arXiv:hep-ph/0501128v2 (2005).

    Article  ADS  Google Scholar 

  4. L. Da Rold and A. Pomarol, “Chiral symmetry breaking from five-dimensional spaces,” Nucl. Phys. B, 721, 79–97 (2005); arXiv:hep-ph/0501218v3 (2005).

    Article  ADS  Google Scholar 

  5. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D, 74, 015005 (2006); arXiv:hep-ph/0602229v2 (2006).

    Article  ADS  Google Scholar 

  6. S. S. Afonin and A. D. Katanaeva, “Holographic estimates of the deconfinement temperature,” Eur. Phys. J. C, 74, 3124 (2014); arXiv:1408.6935v2 [hep-ph] (2014).

    Article  Google Scholar 

  7. S. S. Afonin and A. D. Katanaeva, “Glueballs and deconfinement temperature in AdS/QCD,” Phys. Rev. D, 98, 114027 (2018); arXiv:1809.07730v2 [hep-ph] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Da Rold and A. Pomarol, “The scalar and pseudoscalar sector in a five-dimensional approach to chiral symmetry breaking,” JHEP, 0601, 157 (2006); arXiv:hep-ph/0510268v1 (2005).

    Article  ADS  Google Scholar 

  9. P. Colangelo, F. D. Fazio, F. Giannuzzi, F. Jugeau, and S. Nicotri, “Light scalar mesons in the soft-wall model of AdS/QCD,” Phys. Rev. D, 78, 055009 (2008); arXiv:0807.1054v1 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  10. H. Boschi-Filho and N. R. F. Braga, “QCD/String holographic mapping and glueball mass spectrum,” Eur. Phys.J. C, 32, 529–533 (2004); arXiv:hep-th/0209080v3 (2002).

    Article  ADS  Google Scholar 

  11. P. Colangelo, F. D. Fazio, F. Jugeau, and S. Nicotri, “On the light glueball spectrum in a holographic description of QCD,” Phys. Lett. B, 652, 73–78 (2007); arXiv:hep-ph/0703316v1 (2007).

    Article  ADS  Google Scholar 

  12. H. Forkel, “Holographic glueball structure,” Phys. Rev. D, 78, 025001 (2008); arXiv:0711.1179v2 [hep-ph] (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Colangelo, F. De Fazio, F. Jugeau, and S. Nicotri, “Investigating AdS/QCD duality through scalar glueball correlators,” Internat. J. Modern Phys. A, 24, 4177–4192 (2009); arXiv:0711.4747v2 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  14. D. Li and M. Huang, “Dynamical holographic QCD model for glueball and light meson spectra,” JHEP, 1311, 088 (2013); arXiv:1303.6929v2 [hep-ph] (2013).

    Article  ADS  Google Scholar 

  15. S. P. Bartz, A. Dhumuntarao, and J. I. Kapusta, “Dynamical AdS/Yang-Mills model,” Phys. Rev. D, 98, 026019 (2018); arXiv:1801.06118v2 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Bugg, “Four sorts of meson,” Phys. Rep., 397, 257–358 (2004); arXiv:hep-ex/0412045v1 (2004).

    Article  ADS  Google Scholar 

  17. S. S. Afonin, “Properties of possible new unflavored mesons below 2.4 GeV,” Phys.Rev.C, 76, 015202 (2007); arXiv:0707.0824v1 [hep-ph] (2007).

    Article  ADS  Google Scholar 

  18. S. S. Afonin, “Light meson spectrum and classical symmetries of QCD,” Eur. Phys. J. A, 29, 327–335 (2006); arXiv:hep-ph/0606310v2 (2006).

    Article  ADS  Google Scholar 

  19. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, and B. Petersson, “Thermodynamics of SU(3) lattice gauge theory,” Nucl. Phys. B, 469, 419–444 (1996); arXiv:hep-lat/9602007v1 (1996).

    Article  ADS  Google Scholar 

  20. Y. Iwasaki, K. Kanaya, T. Kaneko, and T. Yoshie, “Scaling of the critical temperature and the quark potential with a renormalization group improved SU(3) gauge action,” Nucl. Phys. B Proc. Suppl., 53, 429–431 (1997); arXiv:hep-lat/9608090v1 (1996).

    Article  ADS  Google Scholar 

  21. B. Lucini, A. Rago, and E. Rinaldi, “SU(N c) gauge theories at deconfinement,” Phys. Lett. B, 712, 279–283 (2012); arXiv:1202.6684v2 [hep-lat] (2012).

    Article  ADS  Google Scholar 

  22. A. Andronic et al., “Hadron production in ultra-relativistic nuclear collisions: Quarkyonic matter and a triple point in the phase diagram of QCD,” Nucl. Phys. A, 837, 65–86 (2010); arXiv:0911.4806v3 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  23. S. Borsányi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabó, “Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III,” JHEP, 1009, 073 (2010); arXiv:1005.3508v1 [hep-lat] (2010).

    Article  ADS  Google Scholar 

  24. P. Steinbrecher and HotQCD Collab., “The QCD crossover at zero and non-zero baryon densities from lattice QCD,” Nucl. Phys. A, 982, 847–850 (2019); arXiv:1807.05607v1 [hep-lat] (2018).

    Article  ADS  Google Scholar 

  25. A. Vega and P. Cabrera, “Family of dilatons and metrics for AdS/QCD models,” Phys. Rev. D, 93, 114026 (2016); arXiv:1601.05999v2 [hep-ph] (2016).

    Article  ADS  Google Scholar 

  26. C. A. Ballon Bayona, H. Boschi-Filh, N. R. F. Braga, and L. A. Pando Zaya, “On a holographic model for confinement/deconfinement,” Phys. Rev. D, 77, 046002 (2008); arXiv:0705.1529v3 [hep-th] (2007).

    Article  ADS  Google Scholar 

  27. U. Gursoy, E. Kiritsis, and F. Nitti, “Exploring improved holographic theories for QCD: part II,” JHEP, 0802, 019 (2008); arXiv:0707.1349v3 [hep-th] (2007).

    Article  ADS  Google Scholar 

  28. O. Andreev and V. I. Zakharov, “Heavy-quark potentials and AdS/QCD,” Phys. Rev. D, 74, 025023 (2006); arXiv:hep-ph/0604204v3 (2006).

    Article  ADS  Google Scholar 

  29. O. Andreev and V. I. Zakharov, “The spatial string tension, thermal phase transition, and AdS/QCD,” Phys. Lett. B, 645, 437–441 (2007); arXiv:hep-ph/0607026v1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  30. Y. Yang and P.-H. Yuan, “Confinement-deconfinement phase transition for heavy quarks in a soft wall holographic QCD model,” JHEP, 1512, 161 (2015); arXiv:1506.05930v2 [hep-th] (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  31. M.-W. Li, Y. Yang, and P.-H. Yuan, “Approaching confinement structure for light quarks in a holographic soft wall QCD model,” Phys. Rev. D, 96, 066013 (2017); arXiv:1703.09184v1 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  32. I. Aref’eva and K Rannu, “Holographic anisotropic background with confinement-deconfinement phase transition,” JHEP, 1805, 206 (2018); arXiv:1802.05652v3 [hep-th] (2018).

    Article  ADS  MathSciNet  Google Scholar 

  33. S. He, S.-Y. Wu, Y. Yang, and P.-H. Yuan, “Phase structure in a dynamical soft-wall holographic QCD mode,” JHEP, 1304, 093 (2013); arXiv:1301.0385v1 [hep-th] (2013).

    Article  ADS  Google Scholar 

  34. D. Dudal and S. Mahapatra, “Thermal entropy of a quark-antiquark pair above and below deconfinement from a dynamical holographic QCD model,” Phys. Rev. D, 96, 126010 (2017); arXiv:1708.06995v3 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Maldacena, “The large N limit of superconformal field theories and supergravity,” Internat. J. Theor. Phys., 38, 1113–1133 (1999); arXiv:hep-th/9711200v3 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  36. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B, 428, 105–114 (1998); arXiv:hep-th/9802109v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys., 2, 253–291 (1998); arXiv:hep-th/9802150v2 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  38. S. J. Brodsky, G. F. de Téramond, H. G. Dosch, and J. Erlich, “Light-front holographic QCD and emerging confinement,” Phys. Rep., 584, 1–105 (2015); arXiv:1407.8131v2 [hep-ph] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  39. H. B. Meyer, “Glueball Regge trajectories,” Doctoral dissertation, Oxford Univ., Oxford (2004); arXiv:hep-lat/0508002v1 (2005).

    Google Scholar 

  40. S. S. Afonin, “Generalized soft wall model,” Phys. Lett. B, 719, 399–403 (2013); arXiv:1210.5210v2 [hep-ph] (2012).

    Article  ADS  Google Scholar 

  41. S. S. Afonin, “Soft-wall modelling of meson spectra,” Acta Phys. Polon. Supp., 9, 597–602 (2016); arXiv: 1604.02903v2 [hep-ph] (2016).

    Article  Google Scholar 

  42. M. Tanabashi et al. [Particle Data Group], “Review of particle physics,” Phys. Rev. D, 98, 030001 (2018).

    Article  ADS  Google Scholar 

  43. A. V. Anisovich, V. V. Anisovich, and A. V. Sarantsev, “Systematics of \(q\overline q \) states in the (n, M 2)and (J, M 2) planes,” Phys. Rev. D, 6, 051502 (2000); arXiv:hep-ph/0003113v1 (2000).

    Article  ADS  Google Scholar 

  44. E. Klemp and A. Zaitsev, “Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts,” Phys. Rep., 454, 1–202 (2007); arXiv:0708.4016v1 [hep-ph] (2007)

    Article  ADS  Google Scholar 

  45. M. Shifman and A. Vainshtein, “Highly excited mesons, linear Regge trajectories, and the pattern of the chiral symmetry realization,” Phys. Rev. D, 77, 034002 (2008); arXiv:0710.0863v3 [hep-ph] (2007)

    Article  ADS  Google Scholar 

  46. S. S. Afonin, “Experimental indication on chiral symmetry restoration in meson spectrum,” Phys. Lett. B, 639, 258–262 (2006); arXiv:hep-ph/0603166v2 (2006)

    Article  ADS  Google Scholar 

  47. “Towards understanding broad degeneracy in non-strange mesons,” Modern Phys. Lett. A, 22, 1359–1371 (2007); arXiv:hep-ph/0701089v2 (2007)

    Article  ADS  Google Scholar 

  48. “Parity doubling in particle physics,” Internat. J. Modern Phys. A, 22, 4537–4586 (2007); arXiv:0704.1639v3 [hep-ph] (2007)

    Article  ADS  Google Scholar 

  49. “Hydrogen like classification for light nonstrange mesons,” Internat. J. Modern Phys. A, 23, 4205–4217 (2008); arXiv:0709.4444v2 [hep-ph] (2007)

    Article  ADS  Google Scholar 

  50. “Implications of the Crystal Barrel data for meson-baryon symmetries,” Modern Phys. Lett. A, 23, 3159–3166 (2008); arXiv:0707.1291v2 [hep-ph] (2007)

    Article  ADS  Google Scholar 

  51. D. M. Li, B. Ma, Y. X. Li, Q. K. Yao, and H. Yu, “Meson spectrum in Regge phenomenology,” Eur. Phys. J. C, 37, 323–333 (2004); arXiv:hep-ph/0408214v1 (2004)

    Article  ADS  Google Scholar 

  52. S. S. Afonin and I. V. Pusenkov, “Universal description of radially excited heavy and light vector mesons,” Phys. Rev. D, 90, 094020 (2014); arXiv:1411.2390v1 [hep-ph] (2014)

    Article  ADS  Google Scholar 

  53. “Note on universal description of heavy and light mesons,” Modern Phys. Lett. A, 29, 1450193 (2014); arXiv:1308.6540v2 [hep-ph] (2013).

    Article  ADS  Google Scholar 

  54. P. Masjuan, E. Ruiz Arriola, and W. Broniowski, “Systematics of radial and angular-momentum Regge trajectories of light nonstrange \(q\overline q \)-states,” Phys. Rev. D, 85, 094006 (2012).

    Article  ADS  Google Scholar 

  55. C. J. Morningstar and M. J. Peardon, “The glueball spectrum from an anisotropic lattice study,” Phys. Rev. D, 60, 034509 (1999); arXiv:hep-lat/9901004v2 (1999).

    Article  ADS  Google Scholar 

  56. Y. Chen, A. Alexandru, S. J. Dong et al., “Glueball spectrum and matrix elements on anisotropic lattices,” Phys. Rev. D, 73, 014516 (2006); arXiv:hep-lat/0510074v1 (2005).

    Article  ADS  Google Scholar 

  57. E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards, and E. Rinaldi, “Towards the glueball spectrum from unquenched lattice QCD,” JHEP, 1210, 170 (2012); arXiv:1208.1858v2 [hep-lat] (2012).

    Article  ADS  Google Scholar 

  58. B. Lucini, M. Teper, and U. Wenger, “Glueballs and k-strings in SU(N) gauge theories: Calculations with improved operators,” JHEP, 0406, 012 (2004); arXiv:hep-lat/0404008v1 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  59. F. E. Close and Q. Zhao, “Production of f 0(1710), f 0(1500), and f 0(1370) in J/ψ hadronic decays,” Phys. Rev. D, 71, 094022 (2005); arXiv:hep-ph/0504043v2 (2005).

    Article  ADS  Google Scholar 

  60. H. Y. Cheng, C.-K. Chua, and K.-F. Liu, “Revisiting scalar glueballs,” Phys. Rev. D, 92, 094006 (2015); arXiv:1503.06827v3 [hep-ph] (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Katanaeva.

Additional information

Conflict of interest

The authors declare no conflicts of interest.

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 3, pp. 532–552, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katanaeva, A.D., Afonin, S.S. Estimates of the Deconfinement Temperature in ADS/QCD. Theor Math Phys 200, 1383–1400 (2019). https://doi.org/10.1134/S0040577919090113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919090113

Keywords

Navigation