Skip to main content
Log in

Towards the glueball spectrum from unquenched lattice QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use a variational technique to study heavy glueballs on gauge configurations generated with 2+1 flavours of ASQTAD improved staggered fermions. The variational technique includes glueball scattering states. The measurements were made using 2150 configurations at 0.092 fm with a pion mass of 360 MeV. We report masses for 10 glueball states. We discuss the prospects for unquenched lattice QCD calculations of the oddballs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UKQCD collaboration, G. Bali et al., A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309 (1993) 378 [hep-lat/9304012] [INSPIRE].

    ADS  Google Scholar 

  2. C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].

    ADS  Google Scholar 

  3. Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73 (2006) 014516 [hep-lat/0510074] [INSPIRE].

    ADS  Google Scholar 

  4. H.B. Meyer and M.J. Teper, Glueball Regge trajectories and the Pomeron: a lattice study, Phys. Lett. B 605 (2005) 344 [hep-ph/0409183] [INSPIRE].

    ADS  Google Scholar 

  5. H.B. Meyer, The Yang-Mills spectrum from a two level algorithm, JHEP 01 (2004) 030 [hep-lat/0312034] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.Q. Liu and J.M. Wu, The first calculation for the mass of the ground 4++ glueball state on lattice, Mod. Phys. Lett. A 17 (2002) 1419 [hep-lat/0105019] [INSPIRE].

    ADS  Google Scholar 

  7. TXL Collaboration, T(X)L collaboration, G.S. Bali et al., Static potentials and glueball masses from QCD simulations with Wilson sea quarks, Phys. Rev. D 62 (2000) 054503 [hep-lat/0003012] [INSPIRE].

    ADS  Google Scholar 

  8. UKQCD collaboration, A. Hart and M. Teper, On the glueball spectrum in O(a) improved lattice QCD, Phys. Rev. D 65 (2002) 034502 [hep-lat/0108022] [INSPIRE].

    ADS  Google Scholar 

  9. UKQCD collaboration, A. Hart, C. McNeile, C. Michael and J. Pickavance, A lattice study of the masses of singlet 0++ mesons, Phys. Rev. D 74 (2006) 114504 [hep-lat/0608026] [INSPIRE].

    ADS  Google Scholar 

  10. UKQCD collaboration, C.M. Richards, A.C. Irving, E.B. Gregory and C. McNeile, Glueball mass measurements from improved staggered fermion simulations, Phys. Rev. D 82 (2010) 034501 [arXiv:1005.2473] [INSPIRE].

    ADS  Google Scholar 

  11. M. Della Morte and L. Giusti, A novel approach for computing glueball masses and matrix elements in Yang-Mills theories on the lattice, JHEP 05 (2011) 056 [arXiv:1012.2562] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H.-Y. Cheng, C.-K. Chua and K.-F. Liu, Scalar glueball, scalar quarkonia and their mixing, Phys. Rev. D 74 (2006) 094005 [hep-ph/0607206] [INSPIRE].

    ADS  Google Scholar 

  13. H.-Y. Cheng, H.-n. Li and K.-F. Liu, Pseudoscalar glueball mass from η-η -G mixing, Phys. Rev. D 79 (2009) 014024 [arXiv:0811.2577] [INSPIRE].

    ADS  Google Scholar 

  14. G. Mennessier, S. Narison and W. Ochs, Glueball nature of the σ/f 0(600) from ππ and γγ scatterings, Phys. Lett. B 665 (2008) 205 [arXiv:0804.4452] [INSPIRE].

    ADS  Google Scholar 

  15. F.E. Close and A. Kirk, Scalar glueball \( q\overline{q} \) mixing above 1 GeV and implications for lattice QCD, Eur. Phys. J. C 21 (2001) 531 [hep-ph/0103173] [INSPIRE].

    Article  ADS  Google Scholar 

  16. W. Ochs, No indication of f 0(1370) in ππ phase shift analyses, AIP Conf. Proc. 1257 (2010) 252 [arXiv:1001.4486] [INSPIRE].

    Article  ADS  Google Scholar 

  17. CP-PACS collaboration, S. Aoki et al., Lattice QCD calculation of the ρ meson decay width, Phys. Rev. D 76 (2007) 094506 [arXiv:0708.3705] [INSPIRE].

    ADS  Google Scholar 

  18. ETM collaboration, K. Jansen, C. McNeile, C. Michael and C. Urbach, Meson masses and decay constants from unquenched lattice QCD, Phys. Rev. D 80 (2009) 054510 [arXiv:0906.4720] [INSPIRE].

    ADS  Google Scholar 

  19. X. Feng, K. Jansen and D.B. Renner, Resonance parameters of the ρ-meson from lattice QCD, Phys. Rev. D 83 (2011) 094505 [arXiv:1011.5288] [INSPIRE].

    ADS  Google Scholar 

  20. C. Lang, D. Mohler, S. Prelovsek and M. Vidmar, Coupled channel analysis of the rho meson decay in lattice QCD, Phys. Rev. D 84 (2011) 054503 [arXiv:1105.5636] [INSPIRE].

    ADS  Google Scholar 

  21. S. Prelovsek, C. Lang, D. Mohler and M. Vidmar, Decay of ρ and a1 mesons on the lattice using distillation, PoS(LATTICE 2011)137 [arXiv:1111.0409] [INSPIRE].

  22. D. Asner et al., Physics at BESIII, Int. J. Mod. Phys. A 24 (2009) S1 [arXiv:0809.1869] [INSPIRE].

    Google Scholar 

  23. BESIII collaboration, S.L. Olsen, News from BESIII, arXiv:1203.4297 [INSPIRE].

  24. PANDA collaboration, M. Lutz et al., Physics performance report for PANDA: strong interaction studies with antiprotons, arXiv:0903.3905 [INSPIRE].

  25. H.B. Meyer, Glueball Regge trajectories, Ph.D. thesis, University of Oxford, Oxford, U.K. (2005), hep-lat/0508002 [INSPIRE].

  26. M.M. Brisudova, L. Burakovsky and J.T. Goldman, Effective functional form of Regge trajectories, Phys. Rev. D 61 (2000) 054013 [hep-ph/9906293] [INSPIRE].

    ADS  Google Scholar 

  27. P.R. Page, Multi-GeV gluonic mesons, hep-ph/0107016 [INSPIRE].

  28. E.S. Swanson, Unquenching the quark model and screened potentials, J. Phys. G 31 (2005) 845 [hep-ph/0504097] [INSPIRE].

    ADS  Google Scholar 

  29. Particle Data Group Collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  30. J.J. Dudek et al., Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83 (2011) 111502 [arXiv:1102.4299] [INSPIRE].

    ADS  Google Scholar 

  31. R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies, Nuovo Cim. Suppl. 3 (1965) 147.

    Google Scholar 

  32. R. Hagedorn, Hadronic matter near the boiling point, Nuovo Cim. A 56 (1968) 1027 [INSPIRE].

    Article  ADS  Google Scholar 

  33. T.D. Cohen and V. Krejcirik, Does the empirical meson spectrum support the Hagedorn conjecture?, J. Phys. G 39 (2012) 055001 [arXiv:1107.2130] [INSPIRE].

    ADS  Google Scholar 

  34. S. Chatterjee, R. Godbole and S. Gupta, Stabilizing hadron resonance gas models, Phys. Rev. C 81 (2010) 044907 [arXiv:0906.2523] [INSPIRE].

    ADS  Google Scholar 

  35. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Majumder and B. Müller, Hadron mass spectrum from lattice QCD, Phys. Rev. Lett. 105 (2010) 252002 [arXiv:1008.1747] [INSPIRE].

    Article  ADS  Google Scholar 

  38. E. Megias, E. Ruiz Arriola and L. Salcedo, The hadron resonance gas model: thermodynamics of QCD and Polyakov loop, arXiv:1207.7287 [INSPIRE].

  39. U. Wiedner, Future prospects for hadron physics at PANDA, Prog. Part. Nucl. Phys. 66 (2011) 477 [arXiv:1104.3961] [INSPIRE].

    Article  ADS  Google Scholar 

  40. B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large-N limit, JHEP 08 (2010) 119 [arXiv:1007.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. Experimental facts versus QCD inspired concepts, Phys. Rept. 454 (2007) 1 [arXiv:0708.4016] [INSPIRE].

    Article  ADS  Google Scholar 

  42. V. Mathieu, N. Kochelev and V. Vento, The physics of glueballs, Int. J. Mod. Phys. E 18 (2009) 1 [arXiv:0810.4453] [INSPIRE].

    ADS  Google Scholar 

  43. C. McNeile, Lattice status of gluonia/glueballs, Nucl. Phys. Proc. Suppl. 186 (2009) 264 [arXiv:0809.2561] [INSPIRE].

    Article  ADS  Google Scholar 

  44. V. Crede and C.A. Meyer, The experimental status of glueballs, Prog. Part. Nucl. Phys. 63 (2009) 74 [arXiv:0812.0600] [INSPIRE].

    Article  ADS  Google Scholar 

  45. MILC collaboration, K. Orginos and D. Toussaint, Testing improved actions for dynamical Kogut-Susskind quarks, Phys. Rev. D 59 (1999) 014501 [hep-lat/9805009] [INSPIRE].

    ADS  Google Scholar 

  46. MILC collaboration, K. Orginos, D. Toussaint and R. Sugar, Variants of fattening and flavor symmetry restoration, Phys. Rev. D 60 (1999) 054503 [hep-lat/9903032] [INSPIRE].

    ADS  Google Scholar 

  47. M.G. Alford, W. Dimm, G. Lepage, G. Hockney and P. Mackenzie, Lattice QCD on small computers, Phys. Lett. B 361 (1995) 87 [hep-lat/9507010] [INSPIRE].

    ADS  Google Scholar 

  48. A. Bazavov et al., Nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, Rev. Mod. Phys. 82 (2010) 1349 [arXiv:0903.3598] [INSPIRE].

    Article  ADS  Google Scholar 

  49. UKQCD collaboration, E.B. Gregory, A.C. Irving, C.M. Richards and C. McNeile, A study of the η and η mesons with improved staggered fermions, Phys. Rev. D 86 (2012) 014504 [arXiv:1112.4384] [INSPIRE].

    ADS  Google Scholar 

  50. HPQCD collaboration, C. Davies, E. Follana, I. Kendall, G.P. Lepage and C. McNeile, Precise determination of the lattice spacing in full lattice QCD, Phys. Rev. D 81 (2010) 034506 [arXiv:0910.1229] [INSPIRE].

    ADS  Google Scholar 

  51. B. Lucini, M. Teper and U. Wenger, Glueballs and k-strings in SU(N) gauge theories: calculations with improved operators, JHEP 06 (2004) 012 [hep-lat/0404008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. Z. Fu, Preliminary lattice study of σ meson decay width, JHEP 07 (2012) 142 [arXiv:1202.5834] [INSPIRE].

    Article  ADS  Google Scholar 

  53. V. Bernard, M. Lage, U.-G. Meissner and A. Rusetsky, Scalar mesons in a finite volume, JHEP 01 (2011) 019 [arXiv:1010.6018] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Döring, U. Meissner, E. Oset and A. Rusetsky, Scalar mesons moving in a finite volume and the role of partial wave mixing, Eur. Phys. J. A 48 (2012) 114 [arXiv:1205.4838] [INSPIRE].

    ADS  Google Scholar 

  55. H.B. Meyer and M.J. Teper, High spin glueballs from the lattice, Nucl. Phys. B 658 (2003) 113 [hep-lat/0212026] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J.J. Dudek, R.G. Edwards, N. Mathur and D.G. Richards, Charmonium excited state spectrum in lattice QCD, Phys. Rev. D 77 (2008) 034501 [arXiv:0707.4162] [INSPIRE].

    ADS  Google Scholar 

  57. H.B. Meyer, Glueball matrix elements: a lattice calculation and applications, JHEP 01 (2009) 071 [arXiv:0808.3151] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Anisovich et al., I = 0, C = +1 mesons from 1920 to 2410 MeV, Phys. Lett. B 491 (2000) 47 [arXiv:1109.0883] [INSPIRE].

    ADS  Google Scholar 

  59. A. Anisovich et al., I = 0, C = −1 mesons from 1940 to 2410 MeV, Phys. Lett. B 542 (2002) 19 [arXiv:1109.5817] [INSPIRE].

    ADS  Google Scholar 

  60. A. Anisovich, D. Bugg, V. Nikonov, A. Sarantsev and V. Sarantsev, Light 2++ and 0++ mesons, Phys. Rev. D 85 (2012) 014001 [arXiv:1110.4333] [INSPIRE].

    ADS  Google Scholar 

  61. D. Bugg, Four sorts of meson, Phys. Rept. 397 (2004) 257 [hep-ex/0412045] [INSPIRE].

    Article  ADS  Google Scholar 

  62. D. Bugg, M.J. Peardon and B. Zou, The glueball spectrum, Phys. Lett. B 486 (2000) 49 [hep-ph/0006179] [INSPIRE].

    ADS  Google Scholar 

  63. G.S. Bali, Charmonia from lattice QCD, Int. J. Mod. Phys. A 21 (2006) 5610 [hep-lat/0608004] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  64. UKQCD collaboration, C. McNeile and C. Michael, An estimate of the flavor singlet contributions to the hyperfine splitting in charmonium, Phys. Rev. D 70 (2004) 034506 [hep-lat/0402012] [INSPIRE].

    ADS  Google Scholar 

  65. L. Levkova and C. DeTar, Charm annihilation effects on the hyperfine splitting in charmonium, Phys. Rev. D 83 (2011) 074504 [arXiv:1012.1837] [INSPIRE].

    ADS  Google Scholar 

  66. MILC collaboration, A. Bazavov et al., Scaling studies of QCD with the dynamical HISQ action, Phys. Rev. D 82 (2010) 074501 [arXiv:1004.0342] [INSPIRE].

    ADS  Google Scholar 

  67. P. Boyle et al., The QCDOC project, Nucl. Phys. (Proc. Suppl.) 140 (2005) 169 [INSPIRE].

    Article  ADS  Google Scholar 

  68. SciDAC, LHPC, UKQCD collaboration, R.G. Edwards and B. Joo, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rinaldi.

Additional information

ArXiv ePrint: 1208.1858

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, E., Irving, A., Lucini, B. et al. Towards the glueball spectrum from unquenched lattice QCD. J. High Energ. Phys. 2012, 170 (2012). https://doi.org/10.1007/JHEP10(2012)170

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)170

Keywords

Navigation