Skip to main content
Log in

Majorana States Near an Impurity in the Kitaev Infinite and Semi-Infinite Model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For an infinite Kitaev chain with an impurity described by a deltalike potential, we analytically prove that two overlapping Majorana bound states in a topologically trivial phase in the case of a small superconducting gap exist under the condition V0 = 2Δ, where V0 is the value of the potential and Δ is the superconducting order parameter. For a semi-infinite Kitaev chain with an impurity in the case of a small gap, we prove that there are two overlapping Majorana bound states in the trivial phase and one Majorana bound state in the topological phase and that the Majorana bound state in the latter case is stable under changes in the model parameters. We find explicit analytic expressions for the corresponding wave functions in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Elliot and M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics,” Rev. Modern Phys., 87, 137–163 (2015); arXiv:1403.4976v2 [cond-mat.supr-con] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems,” Rep. Prog. Phys., 75, 076501 (2012); arXiv:1202.1293v1 [cond-mat.supr-con] (2012).

    Article  ADS  Google Scholar 

  3. M. Sato and S. Fujimoto, “Majorana fermions and topology in superconductors,” J. Phys. Soc. Japan, 85, 072001 (2016); arXiv:1601.02726v2 [cond-mat.supr-con] (2016).

    Article  ADS  Google Scholar 

  4. S. Das Sarma, A. Nag, and J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires,” Phys. Rev. B, 94, 035143 (2016).

    Article  ADS  Google Scholar 

  5. A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires,” Phys. Usp., 44, 131–136 (2001); arXiv:condmat/ 0010440v2 (2000).

    Article  ADS  Google Scholar 

  6. T. Karzig, G. Refael, and F. von Oppen, “Boosting Majorana zero modes,” Phys. Rev. X, 3, 041017 (2013).

    Google Scholar 

  7. S. Das Sarma, J. D. Sau, and T. D. Stanescu, “Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire,” Phys. Rev. B, 86, 220506 (2012).

    Article  ADS  Google Scholar 

  8. Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap,” Phys. E, 89, 130–133 (2017).

    Article  Google Scholar 

  9. Yu. P. Chuburin, “Existence of Majorana bound states in a superconducting nanowire,” Theor. Math. Phys., 197, 1635–1644 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  10. S.-J. Pablo, J. Cayao, E. Prada, and R. Aguado, “Majorana bound states from exceptional points in nontopological superconductors,” Sci. Rep., 6, 21427 (2016).

    Article  ADS  Google Scholar 

  11. C. Moore, T. D. Stanescu, and S. Tewari, “Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures,” Phys. Rev. B, 97, 165302 (2018); arXiv:1611.07058v1 [cond-mat.mes-hall] (2016).

    Article  ADS  Google Scholar 

  12. C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks,” Phys. Rev. B, 96, 075161 (2017); arXiv:1705.02035v2 [cond-mat.mes-hall] (2017).

    Article  ADS  Google Scholar 

  13. A. Vuik, B. Nijholt, A. R. Akhmerov, and M. Wimmer, “Reproducing topological properties with quasi-Majorana states,” arXiv:1806.02801v2 [cond-mat.mes-hall] (2018).

    Google Scholar 

  14. M. A. Continentino, H. Caldas, D. Nozadze, and N. Trivedi, “Topological states in normal and superconducting p-wave chains,” Phys. Lett. A, 378, 3340–3347 (2014).

    Article  ADS  MATH  Google Scholar 

  15. F. von Oppen, Ya. Peng, and F. Pientka, “Topological superconducting phases in one dimension,” in: Topological Aspects of Condensed Matter Physics (Lect. Notes Les Houches Summer School, Vol. 103, C. Chamon, M. O. Goerbig, R. Moessner, and L. F. Cugliandolo, eds.), Oxford Univ. Press, Oxford (2017), pp. 387–450.

    Article  Google Scholar 

  16. Hosho Katsura, Dirk Schuricht, and Masahiro Takahashi, “Exact ground states and topological order in interacting Kitaev/Majorana chains,” Phys. Rev. B, 92, 115137 (2015).

    Article  ADS  Google Scholar 

  17. Yu. P. Chuburin, “A discrete Schrödinger operator on a graph,” Theor. Math. Phys., 165, 1335–1347 (2010).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. S. Tinyukova or Yu. P. Chuburin.

Additional information

This research was supported in part by the Ural Branch of the Russian Academy of Sciences (Grant No. 18-2-2-12).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 200, No. 1, pp. 137–146, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinyukova, T.S., Chuburin, Y.P. Majorana States Near an Impurity in the Kitaev Infinite and Semi-Infinite Model. Theor Math Phys 200, 1043–1052 (2019). https://doi.org/10.1134/S0040577919070080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919070080

Keywords

Navigation