Skip to main content
Log in

Soliton Scattering in Noncommutative Spaces

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss exact multisoliton solutions of integrable hierarchies on noncommutative space–times in various dimensions. The solutions are represented by quasideterminants in compact forms. We study soliton scattering processes in the asymptotic region where the configurations can be real-valued. We find that the asymptotic configurations in the soliton scatterings can all be the same as commutative ones, i.e., the configuration of an N-soliton solution has N isolated localized lumps of energy, and each solitary wave-packet lump preserves its shape and velocity in the scattering process. The phase shifts are also the same as commutative ones. As new results, we present multisoliton solutions of the noncommutative anti-self-dual Yang–Mills hierarchy and discuss two-soliton scattering in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Etingof, I. Gelfand, and V. Retakh, “Factorization of differential operators, quasideterminants, and nonabelian Toda field equations,” Math. Res. Lett., 4, 413–425 (1997); arXiv:q-alg/9701008v2 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  2. I. M. Gel’fand and V. S. Retakh, “Determinants of matrices over noncommutative rings,” Funct. Anal. Appl., 25, 91–102 (1991); “A theory of noncommutative determinants and characteristic functions of graphs,” Funct. Anal. Appl., 26, 231–246 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. V. Doktorov and S. B. Leble, A Dressing Method in Mathematical Physics (Math. Phys. Stud., Vol. 28), Springer, Dordrecht (2007).

    MATH  Google Scholar 

  4. P. Etingof, I. Gelfand, and V. Retakh, “Nonabelian integrable systems, quasideterminants, and Marchenko lemma,” Math. Res. Lett., 5, 1–12 (1998); arXiv:q-alg/9707017v2 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. R. Gilson, M. Hamanaka, and J. J. C. Nimmo, “Bäcklund transformations for noncommutative anti-self-dual Yang–Mills equations,” Glasg. Math. J., 51, No. A, 83–93 (2009); arXiv:0709.2069v2 [nlin.SI] (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. C. R. Gilson, M. Hamanaka, and J. J. C. Nimmo, “Bäcklund transformations and the Atiyah–Ward ansatz for noncommutative anti-self-dual Yang–Mills equations,” Proc. Roy. Soc. Lond. Ser. A, 465, 2613–2632 (2009).

    Article  ADS  MATH  Google Scholar 

  7. C. R. Gilson and S. R. Macfarlane, “Dromion solutions of noncommutative Davey–Stewartson equations,” J. Phys. A: Math. Theor., 42, 235202 (2009); arXiv:0901.4918v3 [nlin.SI] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C. R. Gilson and J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation,” J. Phys. A: Math. Theor., 40, 3839–3850 (2007); arXiv:nlin/0701027v2 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. C. R. Gilson, J. J. C. Nimmo, and Y. Ohta, “Quasideterminant solutions of a non-Abelian Hirota–Miwa equation,” J. Phys. A: Math. Theor., 40, 12607–12618 (2007); arXiv:nlin/0702020v1 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. R. Gilson, J. J. C. Nimmo, and C. M. Sooman, “On a direct approach to quasideterminant solutions of a noncommutative modified KP equation,” J. Phys. A: Math. Theor., 41, 085202 (2008); arXiv:0711.3733v2 [nlin.SI] (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. B. Haider and M. Hassan, “The U(N) chiral model and exact multi-solitons,” J. Phys. A: Math. Theor., 41, 255202 (2008); arXiv:0912.1984v1 [hep-th] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. Hamanaka, “Notes on exact multi-soliton solutions of noncommutative integrable hierarchies,” JHEP, 0702, 094 (2007); arXiv:hep-th/0610006v3 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Hamanaka, “Noncommutative solitons and quasideterminants,” Phys. Scr., 89, 038006 (2014); arXiv: 1101.0005v3 [hep-th] (2011).

    Article  ADS  Google Scholar 

  14. C. X. Li, J. J. C. Nimmo, and K. M. Tamizhmani, “On solutions to the non-Abelian Hirota–Miwa equation and its continuum limits,” Proc. Roy. Soc. Lond. Ser. A, 465, 1441–1451 (2009); arXiv:0809.3833v1 [nlin.SI] (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V. Retakh and V. Rubtsov, “Noncommutative Toda chains, Hankel quasideterminants, and Painlev´e II equation,” J. Phys. A: Math. Theor., 43, 505204 (2010); arXiv:1007.4168v4 [math-ph] (2010).

    Article  MATH  Google Scholar 

  16. M. Siddiq, U. Saleem, and M. Hassan, “Darboux transformation and multi-soliton solutions of a noncommutative sine-Gordon system,” Modern Phys. Lett. A, 23, 115–127 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Dimakis and F. Müller-Hoissen, “Extension of Moyal-deformed hierarchies of soliton equations,” arXiv: nlin/0408023v2 (2004).

    MATH  Google Scholar 

  18. M. Hamanaka, “Noncommutative solitons and D-branes,” Doctoral dissertation, University of Tokyo, Tokyo (2003); arXiv:hep-th/0303256v3 (2003).

    Google Scholar 

  19. M. Hamanaka, “Noncommutative solitons and integrable systems,” in: Noncommutative Geometry and Physics (Keio, 26 February–3 March 2004, Y. Maeda, N. Tose, N. Miyazaki, S. Watamura, and D. Sternheimer, eds.), World Scientific, Singapore (2005), pp. 175–198; arXiv:hep-th/0504001v3 (2005).

    Chapter  Google Scholar 

  20. M. Hamanaka and K. Toda, “Towards noncommutative integrable equations,” in: Symmetry in Nonlinear Mathematical Physics (Kiev, Ukraine, 23–29 June 2003, A. G. Nikitin, ed.), Inst. Math. NASU, Kiev (2004), pp. 404–411; arXiv:hep-th/0309265v2 (2003).

    Google Scholar 

  21. O. Lechtenfeld, “Noncommutative solitons,” in: Noncommutative Geometry and Physics 2005 (Proc. Intl. Sendai–Beijing Joint Workshop, Sendai, Japan, 1–4 November 2005, Beijing, China, 7–10 November 2005, U. Carow-Watamura, S. Watamura, Y. Maeda, H. Moriyoshi, Z. Liu, and K. Wu, eds.), World Scientific, Singapore (2007), pp. 175–200; arXiv:hep-th/0605034v1 (2006).

    Chapter  Google Scholar 

  22. L. Mazzanti, “Topics in noncommutative integrable theories and holographic brane-world cosmology,” arXiv: 0712.1116v2 [hep-th] (2007).

    Google Scholar 

  23. L. Tamassia, “Noncommutative supersymmetric/integrable models and string theory,” arXiv:hep-th/0506064v3 (2005).

    Google Scholar 

  24. A. Dimakis and F. Müller-Hoissen, “Noncommutative Korteweg–de-Vries equation,” Phys. Lett. A, 278, 139–145 (2000); arXiv:hep-th/0007074v1 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Martina and O. K. Pashaev, “Burgers’ equation in non-commutative space–time,” arXiv:hep-th/0302055v1 (2003).

    MATH  Google Scholar 

  26. L. D. Paniak, “Exact noncommutative KP and KdV multi-solitons,” arXiv:hep-th/0105185v2 (2001).

    Google Scholar 

  27. J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Phil. Soc., 45, 99–124 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. H. J. Groenewold, “On the principles of elementary quantum mechanics,” Phys., 12, 405–460 (1946).

    ADS  MathSciNet  MATH  Google Scholar 

  29. M. Hamanaka and K. Toda, “Noncommutative Burgers equation,” J. Phys. A: Math. Theor., 36, 11981–11998 (2003); arXiv:hep-th/0301213v2 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Hamanaka, “Noncommutative Ward’s conjecture and integrable systems,” Nucl. Phys. B, 741, 368–389 (2006); arXiv:hep-th/0601209v2 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. K. Toda, “Extensions of soliton equations to non-commutative (2+1) dimensions,” PoS, 008 (unesp2002), 038 (2002).

    MathSciNet  MATH  Google Scholar 

  32. M. Hamanaka, “On reductions of noncommutative anti-self-dual Yang–Mills equations,” Phys. Lett. B, 625, 324–332 (2005); arXiv:hep-th/0507112v4 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M. Hamanaka and K. Toda, “Towards noncommutative integrable systems,” Phys. Lett. A, 316, 77–83 (2003); arXiv:hep-th/0211148v3 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. R. S. Ward, “Integrable and solvable systems, and relations among them,” Phil. Trans. Roy. Soc. Lond. Ser. A, 315, 451–457 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (London Math. Soc. Lect. Note Ser., Vol. 149), Cambridge Univ. Press, Cambridge (1991).

    Book  MATH  Google Scholar 

  36. L. J. Mason and N. M. Woodhouse, Integrability, Self-Duality, and Twistor Theory (London Math. Soc. Monogr. New Ser., Vol. 15), Oxford Univ. Press, Oxford (1996).

    MATH  Google Scholar 

  37. I. Gelfand, S. Gelfand, V. Retakh, and R. Wilson, “Quasideterminants,” Adv. Math., 193, 56–141 (2005); arXiv:math.QA/0208146v4 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  38. O. Babelon, D. Bernard, and M. Talon, Introduction to Classical Integrable Systems, Cambridge Univ. Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  39. M. Błaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer, Berlin (1998).

    Book  MATH  Google Scholar 

  40. L. A. Dickey, Soliton Equations and Hamiltonian Systems (Adv. Ser. Math. Phys., Vol. 26), World Scientific, Singapore (2003).

    Book  MATH  Google Scholar 

  41. B. A. Kupershmidt, KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems (Math. Surv. Monogr., Vol. 78), Amer. Math. Soc., Providence, R. I. (2000).

    Book  MATH  Google Scholar 

  42. M. Hamanaka, “Commuting flows and conservation laws for noncommutative Lax hierarchies,” J. Math. Phys., 46, 052701 (2005); arXiv:hep-th/0311206v2 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. S. Carillo, M. Lo Schiavo, and C. Schiebold, “Bäcklund transformations and non-abelian nonlinear evolution equations: A novel Bäcklund chart,” SIGMA, 12, 087 (2016); arXiv:1512.02386v2 [math-ph] (2015).

    MATH  Google Scholar 

  44. B. G. Konopelchenko and W. Oevel, “Matrix Sato theory and integrable systems in 2+1 dimensions,” in: Nonlinear Evolution Equations and Dynamical Systems (Proc. Workshop NEEDS’91, Baia Verde, Galipoli, Italy, 19–29 June 1991, M. Bolti, L. Martina, and F. Pempinelli, eds.), World Scientific, Singapore (1992), pp. 87–96.

    Google Scholar 

  45. W. X. Ma, “An extended noncommutative KP hierarchy,” J. Math. Phys., 51, 073505 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. P. J. Olver and V. V. Sokolov, “Integrable evolution equations on associative algebras,” Commun. Math. Phys., 193, 245–268 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. J. P. Wang, “On the structure of (2+1)-dimensional commutative and noncommutative integrable equations,” J. Math. Phys., 47, 113508 (2006); arXiv:nlin/0606036v1 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. N. Wang and M. Wadati, “Noncommutative KP hierarchy and Hirota triple-product relations,” J. Phys. Soc. Japan, 73, 1689–1698 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. K. Ohkuma and M. Wadati, “The Kadomtsev–Petviashvili equation: The trace method and the soliton resonances,” J. Phys. Soc. Japan, 52, 749–760 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  50. Y. Kodama, KP Solitons and the Grassmannians (Springer Briefs Math. Phys., Vol. 22), Springer, Singapore (2017).

    Book  MATH  Google Scholar 

  51. I. A. B. Strachan, “A geometry for multidimensional integrable systems,” J. Geom. Phys., 21, 255–278 (1997); arXiv:hep-th/9604142v1 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. M. J. Ablowitz, S. Chakravarty, and L. A. Takhtajan, “A selfdual Yang–Mills hierarchy and its reductions to integrable systems in (1+1)-dimensions and (2+1)-dimensions,” Commun. Math. Phys., 158, 289–314 (1993).

    Article  ADS  MATH  Google Scholar 

  53. Y. Nakamura, “Transformation group acting on a self-dual Yang–Mills hierarchy,” J. Math. Phys., 29, 244–248 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. K. Suzuki, “Explorations of a self-dual Yang–Mills hierarchy,” Diploma thesis, Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen (2006).

    Google Scholar 

  55. K. Takasaki, “A new approach to the selfdual Yang–Mills equations,” Commun. Math. Phys., 94, 35–59 (1984).

    Article  ADS  MATH  Google Scholar 

  56. H. J. de Vega, “Non-linear multi-plane wave solutions of self-dual Yang–Mills theory,” Commun. Math. Phys., 116, 659–674 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. J. C. Nimmo, C. R. Gilson, and Ya. Ohta, “Applications of Darboux transformations to the self-dual Yang–Mills equations,” Theor. Math. Phys., 122, 239–246 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hamanaka.

Additional information

The research of M. Hamanaka was supported by a Grant-in-Aid for Scientific Research (No. 16K05318).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 197, No. 1, pp. 68–88, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamanaka, M., Okabe, H. Soliton Scattering in Noncommutative Spaces. Theor Math Phys 197, 1451–1468 (2018). https://doi.org/10.1134/S0040577918100045

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918100045

Keywords

Navigation