Skip to main content
Log in

Four-Parameter 1/r2 Singular Short-Range Potential with Rich Bound States and A Resonance Spectrum

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the tridiagonal representation approach to enlarge the class of exactly solvable quantum systems. For this, we use a square-integrable basis in which the matrix representation of the wave operator is tridiagonal. In this case, the wave equation becomes a three-term recurrence relation for the expansion coefficients of the wave function with a solution in terms of orthogonal polynomials that is equivalent to a solution of the original problem. We obtain S-wave bound states for a new four-parameter potential with a 1/r2 singularity but short-range, which has an elaborate configuration structure and rich spectral properties. A particle scattered by this potential must overcome a barrier and can then be trapped in the potential valley in a resonance or bound state. Using complex rotation, we demonstrate the rich spectral properties of the potential in the case of a nonzero angular momentum and show how this structure varies with the parameters of the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Natanzon, “General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions,” Theor. Math. Phys., 38, 146–153 (1979).

    Article  MATH  Google Scholar 

  2. R. De, R. Dutt, and U. Sukhatme, “Mapping of shape invariant potentials under point canonical transformations,” J. Phys. A: Math. Gen., 25, L843–L850 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. M. Ishkhanyan, “Schrödinger potentials solvable in terms of the confluent Heun function,” Theor. Math. Phys., 188, 980–993 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. D. Alhaidari, “An extended class of L2-series solutions of the wave equation,” Ann. Phys., 317, 152–174 (2005).

    Article  ADS  MATH  Google Scholar 

  5. A. D. Alhaidari, “Analytic solution of the wave equation for an electron in the field of a molecule with an electric dipole moment,” Ann. Phys., 323, 1709–1728 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. D. Alhaidari and H. Bahlouli, “Extending the class of solvable potentials: I. The infinite potential well with a sinusoidal bottom,” J. Math. Phys., 49, 082102 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. D. Alhaidari, “Extending the class of solvable potentials: II. Screened Coulomb potential with a barrier,” Phys. Scr., 81, 025013 (2010); arXiv:1004.3905v1 [math-ph] (2010).

    Article  ADS  MATH  Google Scholar 

  8. H. Bahlouli and A. D. Alhaidari, “Extending the class of solvable potentials: III. The hyperbolic single wave,” Phys. Scr., 81, 025008 (2010).

    Article  ADS  MATH  Google Scholar 

  9. A. D. Alhaidari, “Solution of the nonrelativistic wave equation using the tridiagonal representation approach,” J. Math. Phys., 58, 072104 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. R. Koekoek and R. F. Swarttouw, “The Askey-scheme of hypergeometric orthogonal polynomials and its qanalogues,” Reports of the Faculty of Technical Mathematics and Informatics, No. 98–17, Delft Univ. of Technology, Delft, 38–44 (1998); arXiv:math/9602214v1 (1996).

    Google Scholar 

  11. A. D. Alhaidari and M. E. H. Ismail, “Quantum mechanics without potential function,” J. Math. Phys., 56, 072107 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. K. M. Case, “Orthogonal polynomials from the viewpoint of scattering theory,” J. Math. Phys., 15, 2166–2174 (1974).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J. S. Geronimo and K. M. Case, “Scattering theory and polynomials orthogonal on the real line,” Trans. Amer. Math. Soc., 258, 467–494 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. D. Alhaidari, “Representation reduction and solution space contraction in quasi-exactly solvable systems,” J. Phys. A: Math. Theor., 40, 6305–6328 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. W. Haymaker and L. Schlessinger, “Padé approximants as a computational tool for solving the Schrodinger and Bethe–Salpeter equations,” in: The Padé Approximation in Theoretical Physics (Math. in Sci. and Engineering, Vol. 71, G. A. Baker and J. L. Gammel, eds.), Acad. Press, New York (1970), pp. 257–287.

    Article  Google Scholar 

  16. J. Aquilar and J. M. Combes, “A class of analytic perturbations for one-body Schrödinger Hamiltonians,” Commun. Math. Phys., 22, 269–279 (1971).

    Article  ADS  MATH  Google Scholar 

  17. E. Balslev and J. M. Combes, “Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions,” Commun. Math. Phys., 22, 280–294 (1971).

    Article  ADS  MATH  Google Scholar 

  18. B. Simon, “Quadratic form techniques and the Balslev–Combes theorem,” Commun. Math. Phys., 27, 1–9 (1972).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. B. Simon, “Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory,” Ann. Math., 97, 247–274 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Cerjan, R. Hedges, C. Holt, W. P. Reinhardt, K. Scheibner, and J. J. Wendoloski, “Complex coordinates and the Stark effect,” Internat. J. Quantum Chem., 14, 393–418 (1978).

    Article  Google Scholar 

  21. W. P. Reinhardt, “Complex coordinates in the theory of atomic and molecular structure and dynamics,” Ann. Rev. Phys. Chem., 33, 223–255 (1982).

    Article  ADS  Google Scholar 

  22. B. R. Junker, “Recent computational developments in the use of complex scaling in resonance phenomena,” Adv. Atom. Mol. Phys., 18, 207–263 (1982).

    Article  ADS  Google Scholar 

  23. A. Maquet, S.-I. Chu, and W. P. Reinhardt, “Stark ionization in dc and ac fields: An L2 complex-coordinate approach,” Phys. Rev. A, 27, 2946–2970 (1983).

    Article  ADS  Google Scholar 

  24. Y. K. Ho, “The method of complex coordinate rotation and its applications to atomic collision processes,” Phys. Rep., 99, 1–68 (1983).

    Article  ADS  Google Scholar 

  25. M. Bylicki, “Methods involving complex coordinates applied to atoms,” Adv. Quantum Chem., 32, 207–226 (1998).

    Article  ADS  Google Scholar 

  26. N. Moiseyev, “Quantum theory of resonances: calculating energies, widths, and cross-sections by complex scaling,” Phys. Rep., 302, 212–293 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Alhaidari.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 195, No. 3, pp. 422–436, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhaidari, A.D. Four-Parameter 1/r2 Singular Short-Range Potential with Rich Bound States and A Resonance Spectrum. Theor Math Phys 195, 861–873 (2018). https://doi.org/10.1134/S0040577918060053

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918060053

Keywords

Navigation