Skip to main content
Log in

Bound states of a quartic and sextic inverse-power-law potential for all angular momenta

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We use the tridiagonal representation approach to solve the radial Schrödinger equation for an inverse-power-law potential of a combined quartic and sextic degrees and for all angular momenta. The amplitude of the quartic singularity is larger than that of the sextic but the signs are negative and positive, respectively. It turns out that the system has a finite number of bound states, which is determined by the larger ratio of the two singularity amplitudes. The solution is written as a finite series of square integrable functions written in terms of the Bessel polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.R. Thorsheim, J. Weiner, P.S. Julienne, Laser-induced photo-association of ultra-cold sodium atoms. Phys. Rev. Lett. 58, 2420 (1987)

    Article  ADS  Google Scholar 

  2. J.D. Miller, R.A. Cline, D.J. Heinzen, Photo-association spectrum of ultra-cold Rb atoms. Phys. Rev. Lett. 71, 2204 (1993)

    Article  ADS  Google Scholar 

  3. R.A. Cline, J.D. Miller, D.J. Heinzen, Study of Rb2 long-range states by high-resolution photo-association spectroscopy. Phys. Rev. Lett. 73, 632 (1994)

    Article  ADS  Google Scholar 

  4. C.J. Williams, P.S. Julienne, Molecular hyperfine structure in the photo-association spectroscopy of laser cooled atoms. J. Chem. Phys. 101, 2634 (1994)

    Article  ADS  Google Scholar 

  5. R. Cote, A. Dalgarno, M.J. Jamieson, Elastic scattering of two 7Li atoms. Phys. Rev. A 50, 399 (1994)

    Article  ADS  Google Scholar 

  6. H. Wang, P.L. Gould, W.C. Stwalley, Photo-associative spectroscopy of ultra-cold 39K atoms in a high-density vapor-cell magneto-optical trap. Phys. Rev. A 53, R1216 (1996)

    Article  ADS  Google Scholar 

  7. B. Gao, Solutions of the Schrodinger equation for an attractive 1/r6 potential. Phys. Rev. A 58, 1728 (1998)

    Article  ADS  Google Scholar 

  8. J. Trost, C. Eltschka, H. Friedrich, Quantization in molecular potentials. J. Phys. B 31, 361 (1998)

    Article  ADS  Google Scholar 

  9. S. Hod, Highly excited bound-state resonances of short-range inverse power-law potentials. Eur. Phys. J. C 77, 774 (2017)

    Article  ADS  Google Scholar 

  10. S.-H. Dong, On the solutions of the schrödinger equation with some anharmonic potentials: wave function ansatz. Phys. Scr. 65, 289 (2002)

    Article  ADS  Google Scholar 

  11. S.-H. Dong, Exact solutions of the two-dimensional Schrodinger equation with certain central potentials. Int. J. Theor. Phys. 39, 1119 (2000)

    Article  MathSciNet  Google Scholar 

  12. S.-H. Dong, Z.-Q. Ma, Exact solutions to the Schrödinger equation for the potential V(r) = ar2 + br−4 + cr−6 in two dimensions. J. Phys. A 31, 9855 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.D. Alhaidari, H. Bahlouli, Tridiagonal representation approach in quantum mechanics. Phys. Scr. 94, 125206 (2019)

    Article  ADS  Google Scholar 

  14. A.D. Alhaidari, H. Bahlouli, M.S. Abdelmonem, Taming the Yukawa potential singularity: improved evaluation of bound states and resonance energies. J. Phys. A 41, 032001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. A.D. Alhaidari, Exponentially confining potential well. Theor. Math. Phys. 206, 84 (2021)

    MathSciNet  Google Scholar 

  16. A.D. Alhaidari, Open problem in orthogonal polynomials. Rep. Math. Phys. 84, 393 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Mebirouk, S. Bouheroum-Mentri, L. Aceto, Approximation of eigenvalues of Sturm–Liouville problems defined on a semi-infinite domain. Appl. Math. Comput. 369, 124823 (2020)

    MathSciNet  MATH  Google Scholar 

  18. A.D. Alhaidari, H. Bahlouli, C.P. Aparicio, S.M. Al-Marzoug. The J-Matrix Method of Scattering for Inverse-Square Singular Potential with Supercritical Coupling. arXiv: 2012.07493 [quant-ph]

  19. R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their Q-Analogues (Springer, Heidelberg, 2010).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Assi.

Appendix: Bessel polynomial on the real line

Appendix: Bessel polynomial on the real line

The Bessel polynomial on the positive real line is defined in terms of the hypergeometric or confluent hypergeometric functions as follows (see section 9.13 of the book by Koekoek et al. [19] but make the replacement \(x \mapsto 2x\) and \(a \mapsto 2\mu\))

$$ Y_{n}^{\mu } (x) = {}_{2}F_{0} \left( {\left. {_{{\_\_}}^{{ - n,n + 2\mu + 1}} } \right| - x} \right) = \left( {n + 2\mu + 1} \right)_{n} x^{n} {}_{1}F_{1} \left( {\left. {_{{ - 2(n + \mu )}}^{{ - n}} } \right|{1 \mathord{\left/ {\vphantom {1 x}} \right. \kern-\nulldelimiterspace} x}} \right), $$
(A1)

where x ≥ 0, \(n = 0,1,2, \ldots ,N\) and N is a non-negative integer. The real parameter μ is negative such that \(\mu < - N - \tfrac{1}{2}\). The Pochhammer symbol \((a)_{n}\) (a.k.a. shifted factorial) is defined as \(\left( a \right)_{n} = a(a + 1)(a + 2) \ldots (a + n - 1) = \tfrac{\varGamma (n + a)}{{\varGamma (a)}}\). The Bessel polynomial could also be written in terms of the associated Laguerre polynomial as: \(Y_{n}^{\mu } (x) = n!\left( { - x} \right)^{n} L_{n}^{ - (2n + 2\mu + 1)} \left( {{1 \mathord{\left/ {\vphantom {1 x}} \right. \kern-\nulldelimiterspace} x}} \right)\). The three-term recursion relation reads as follows:

$$ \begin{aligned} & 2x\,Y_{n}^{\mu } (x) = \frac{ - \mu }{{(n + \mu )(n + \mu + 1)}}Y_{n}^{\mu } (x) \\ & \quad - \frac{n}{(n + \mu )(2n + 2\mu + 1)}\,Y_{n - 1}^{\mu } (x) + \frac{n + 2\mu + 1}{{(n + \mu + 1)(2n + 2\mu + 1)}}\,Y_{n + 1}^{\mu } (x) \\ \end{aligned} $$
(A2)

Note that the constraints on μ and on the maximum polynomial degree make this recursion definite (i.e., the signs of the two recursion coefficients multiplying \(Y_{n \pm 1}^{\mu } (x)\) are the same). Otherwise, these polynomials could not be defined on the real line but on the unit circle in the complex plane. The orthogonality relation reads as follows

$$ \int_{0}^{\infty } {x^{2\mu } {\text{e}}^{{ - {1 \mathord{\left/ {\vphantom {1 x}} \right. \kern-\nulldelimiterspace} x}}} Y_{n}^{\mu } (x)Y_{m}^{\mu } (x)\,{\text{d}}x} = - \frac{n!\varGamma ( - n - 2\mu )}{{2n + 2\mu + 1}}\delta_{nm} . $$
(A3)

The differential equation is

$$ \left\{ {x^{2} \frac{{{\text{d}}^{2} }}{{{\text{d}}x^{2} }} + \left[ {1 + 2x\left( {\mu + 1} \right)} \right]\frac{{\text{d}}}{{{\text{d}}x}} - n\left( {n + 2\mu + 1} \right)} \right\}Y_{n}^{\mu } (x) = 0. $$
(A4)

The forward and backward shift differential relations read as follows:

$$ \frac{{\text{d}}}{{{\text{d}}x}}Y_{n}^{\mu } (x) = n\left( {n + 2\mu + 1} \right)Y_{n - 1}^{\mu + 1} (x). $$
(A5)
$$ x^{2} \frac{{\text{d}}}{{{\text{d}}x}}Y_{n}^{\mu } (x) = - \left( {2\mu x + 1} \right)Y_{n}^{\mu } (x) + Y_{n + 1}^{\mu - 1} (x). $$
(A6)

We can write \(Y_{n + 1}^{\mu - 1} (x)\) in terms of \(Y_{n}^{\mu } (x)\) and \(Y_{n \pm 1}^{\mu } (x)\) as follows:

$$ \begin{aligned} & 2Y_{n + 1}^{\mu - 1} (x) = \frac{(n + 1)(n + 2\mu )}{{(n + \mu )(n + \mu + 1)}}\,Y_{n}^{\mu } (x) \\ & \quad + \frac{n\,(n + 1)}{{(n + \mu )(2n + 2\mu + 1)}}\,Y_{n - 1}^{\mu } (x) + \frac{(n + 2\mu )(n + 2\mu + 1)}{{(n + \mu + 1)(2n + 2\mu + 1)}}\,Y_{n + 1}^{\mu } (x) \\ \end{aligned} $$
(A7)

Using this identity and the recursion relation (A2), we can rewrite the backward shift differential relation as follows:

$$ \begin{aligned} & 2x^{2} \frac{{\text{d}}}{{{\text{d}}x}}Y_{n}^{\mu } (x) = n\,(n + 2\mu + 1) \\ & \quad \times \left[ { - \frac{{Y_{n}^{\mu } (x)}}{(n + \mu )(n + \mu + 1)} + \frac{{Y_{n - 1}^{\mu } (x)}}{(n + \mu )(2n + 2\mu + 1)} + \frac{{Y_{n + 1}^{\mu } (x)}}{(n + \mu + 1)(2n + 2\mu + 1)}} \right] \\ \end{aligned} $$
(A8)

The generating function is

$$ \sum\limits_{n = 0}^{\infty } {Y_{n}^{\mu } (x)\frac{{t^{n} }}{n!}} = \frac{{2^{2\mu } }}{{\sqrt {1 - 4xt} }}\left( {1 + \sqrt {1 - 4xt} } \right)^{ - 2\mu } \exp \left[ {{{2t} \mathord{\left/ {\vphantom {{2t} {(1 + \sqrt {1 - 4xt} )}}} \right. \kern-\nulldelimiterspace} {(1 + \sqrt {1 - 4xt} )}}} \right]. $$
(A9)

The polynomial \(B_{n}^{\mu } (z;\gamma )\) is defined in [15] by its three-term recursion relation Eq. (16) therein, which reads

$$ \begin{aligned} & z\,B_{n}^{\mu } (z;\gamma ) = \left[ {\frac{ - 2\mu }{{(n + \mu )(n + \mu + 1)}} + \gamma \left( {n + \mu + \tfrac{1}{2}} \right)^{2} } \right]B_{n}^{\mu } (z;\gamma ) \\ & \quad - \frac{n}{{(n + \mu )\left( {n + \mu + \tfrac{1}{2}} \right)}}\,B_{n - 1}^{\mu } (z;\gamma ) + \frac{n + 2\mu + 1}{{(n + \mu + 1)\left( {n + \mu + \tfrac{1}{2}} \right)}}\,B_{n + 1}^{\mu } (z;\gamma ) \\ \end{aligned} $$
(A10)

where \(B_{0}^{\mu } (z;\gamma ) = 1\) and \(B_{ - 1}^{\mu } (z;\gamma ): = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhaidari, A.D., Assi, I.A. & Mebirouk, A. Bound states of a quartic and sextic inverse-power-law potential for all angular momenta. Eur. Phys. J. Plus 136, 443 (2021). https://doi.org/10.1140/epjp/s13360-021-01424-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01424-w

Navigation