Skip to main content
Log in

Vacuum and Thermal Energies for Two Oscillators Interacting Through A Field

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a simple (1+1)-dimensional model for the Casimir–Polder interaction consisting of two oscillators coupled to a scalar field. We include dissipation in a first-principles approach by allowing the oscillators to interact with heat baths. For this system, we derive an expression for the free energy in terms of real frequencies. From this representation, we derive the Matsubara representation for the case with dissipation. We consider the case of vanishing intrinsic frequencies of the oscillators and show that the contribution from the zeroth Matsubara frequency is modified in this case and no problem with the laws of thermodynamics appears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. B. Bezerra, G. L. Klimchitskaya, and V. M. Mostepanenko, “Thermodynamical aspects of the Casimir force between real metals at nonzero temperature,” Phys. Rev. A, 65, 052113 (2002).

    Article  ADS  Google Scholar 

  2. G. L. Klimchitskaya and V. M. Mostepanenko, “Conductivity of dielectric and thermal atom-wall interaction,” J. Phys. A: Math. Theor., 41, 312002 (2008).

    Article  ADS  MATH  Google Scholar 

  3. G. L. Klimchitskaya and V. M. Mostepanenko, “Casimir free energy and pressure for magnetic metal films,” Phys. Rev. B, 94, 045404 (2016).

    Article  ADS  Google Scholar 

  4. J. Schwinger, L. L. DeRaad, Jr. and K. A. Milton, “Casimir effect in dielectrics,” Ann. Phys., 115, 1–23 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Kupiszewska, “Casimir effect in absorbing media,” Phys. Rev. A, 46, 2286–2294 (1992).

    Article  ADS  Google Scholar 

  6. F. S. S. Rosa, D. A. R. Dalvit, and P. W. Milonni, “Electromagnetic energy, absorption, and Casimir forces: Uniform dielectric media in thermal equilibrium,” Phys. Rev. A, 81, 033812 (2010).

    Article  ADS  Google Scholar 

  7. F. S. S. Rosa, D. A. R. Dalvit, and P. W. Milonni, “Electromagnetic energy, absorption, and Casimir forces: II. Inhomogeneous dielectric media,” Phys. Rev. A, 84, 053813 (2011).

    Article  ADS  Google Scholar 

  8. F. C. Lombardo, F. D. Mazzitelli, and A. E. Rubio López, “Casimir force for absorbing media in an open quantum system framework: Scalar model,” Phys. Rev. A, 84, 052517 (2011).

    Article  ADS  Google Scholar 

  9. P. R. Berman, G. W. Ford, and P. W. Milonni, “Nonperturbative calculation of the London–van der Waals interaction potential,” Phys. Rev. A, 89, 022127 (2014).

    Article  ADS  Google Scholar 

  10. M. A. Braun, “The Casimir energy in a dispersive and absorptive medium in the Fano diagonalization approach,” Theor. Math. Phys., 190, 237–250 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. -P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, New York (2002).

    MATH  Google Scholar 

  12. M. Bordag, “Drude model and Lifshitz formula,” Eur. Phys. J. C, 71, 1788 (2011).

    Article  ADS  Google Scholar 

  13. F. Intravaia and R. Behunin, “Casimir effect as a sum over modes in dissipative systems,” Phys. Rev. A, 86 (2012).

  14. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., 124, 1866–1878 (1961).

    Article  ADS  MATH  Google Scholar 

  15. B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A, 46, 4306–4322 (1992).

    Article  ADS  Google Scholar 

  16. H. B. Callen and T. A. Welton, “Irreversibility and generalized noise,” Phys. Rev., 83, 34–40 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. G. W. Ford, J. T. Lewis, and R. F. O’Connell, “Quantum Langevin equation,” Phys. Rev. A, 37, 4419–4428 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  18. G. W. Ford, J. T. Lewis, and R. F. O’Connell, “Quantum oscillator in a blackbody radiation field,” Phys. Rev. Lett., 55, 2273–2276 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Bordag, “Vacuum energy in smooth background fields,” J. Phys. A: Math. Gen., 28, 755–765 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  20. M. J. Renne, “Retarded Van der Waals interaction in a system of harmonic oscillators,” Phys., 53, 193–209 (1971).

    ADS  Google Scholar 

  21. M. J. Renne and B. R. A. Nijboer, “Microscopic derivation of macroscopic Van der Waals forces,” Chem. Phys. Lett., 1, 317–320 (1967).

    Article  ADS  Google Scholar 

  22. M. Bordag and J. M. Mu˜noz-Casta˜neda, “Dirac lattices, zero-range potentials, and self-adjoint extension,” Phys. Rev. D, 91, 065027 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bordag.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 195, No. 3, pp. 391–421, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordag, M. Vacuum and Thermal Energies for Two Oscillators Interacting Through A Field. Theor Math Phys 195, 834–860 (2018). https://doi.org/10.1134/S0040577918060041

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918060041

Keywords

Navigation