Skip to main content
Log in

The Effective Hamiltonian Method in the Thermodynamics of Two Resonantly Interacting Quantum Oscillators

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the classical problem of two resonantly interacting oscillators each of which is coupled to “its own” heat bath based on the effective Hamiltonian method and the quantum stochastic differential equation (in contrast to the well-known “global” and “local” approaches). We show that in the second order of the algebraic perturbation theory, each of the oscillators turns out to be also coupled to the “foreign” heat bath. We calculate the steady-state heat flows and prove that there is no heat flow from the cold heat bath to the hot one, as evidenced by some results of the local approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, and A. Georges, Science (Washington, DC, U. S.) 342, 713 (2013).

    Article  ADS  Google Scholar 

  2. M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-Obermaier, G. Landi, F. L. Semio, A. Ferraro, N. Kiesel, T. Donner, G. De Chiara, and M. Paternostro, Phys. Rev. Lett. 121, 160604 (2018).

    Article  ADS  Google Scholar 

  3. R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, and T. Esslinger, Nature (London, U.K.) 532, 476 (2016).

    Article  ADS  Google Scholar 

  4. S. Krinner, T. Esslinger, and J.-P. Brantut, J. Phys.: Condens. Matter 29, 343003 (2017).

    Google Scholar 

  5. M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, Nat. Nanotechnol. 13, 920 (2018).

    Article  ADS  Google Scholar 

  6. A. Nitzan and M. A. Ratner, Science (Washington, DC, U. S.) 300, 1384 (2003).

    Article  ADS  Google Scholar 

  7. Y. Dubi and M. di Ventra, Rev. Mod. Phys. 83, 131 (2011).

    Article  ADS  Google Scholar 

  8. J. P. Pekola and I. M. Khaymovich, Ann. Rev. Condens. Matter Phys. (2018).

  9. A. Levy and R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012).

    Article  ADS  Google Scholar 

  10. A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah, and V. Scarani, Phys. Rev. E 95, 062131 (2017).

    Article  ADS  Google Scholar 

  11. B. Reid, S. Pigeon, M. Antezza, and G. de Chiara, Europhys. Lett. 120, 60006 (2017).

    Article  ADS  Google Scholar 

  12. A. Hewgill, A. Ferraro, and G. de Chiara, Phys. Rev. A 98, 042102 (2018).

    Article  ADS  Google Scholar 

  13. S. Scopa, G. T. Landi, and D. Karevski, Phys. Rev. A 97, 062121 (2018).

    Article  ADS  Google Scholar 

  14. E. B. Davis, Quantum Theory of Open Systems (Academic, New York, 1976).

    Google Scholar 

  15. R. S. Ingarden, A. Kossakowski, and M. Ohya, Information Dynamics and Open Systems: Classical and Quantum Approach (Springer, Netherlands, 1997).

    Book  Google Scholar 

  16. A. Joye, S. Attal, and Cl.-A. Pillet, Open Quantum Systems I. The Hamiltonian Approach (Springer, Berlin, Heidelberg, 2005).

    MATH  Google Scholar 

  17. G. Schaller, Open Quantum Systems Far from Equilibrium (Springer Int., Cham, 2014).

    Book  Google Scholar 

  18. I. G. Lang and Yu. A. Firsov, Sov. Phys. JETP 16, 1301 (1962).

    ADS  Google Scholar 

  19. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  20. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  ADS  Google Scholar 

  21. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Rep. Math. Phys. 13, 149 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  22. N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Akad. Nauk SSSR, Moscow, 1958).

    MATH  Google Scholar 

  23. A. Levy and R. Kozloff, Europhys. Lett. 107, 20004 (2014).

    Article  ADS  Google Scholar 

  24. A. S. Trushechkin and I. V. Volovich, Europhys. Lett. 113, 30005 (2016).

    Article  Google Scholar 

  25. D. F. Walls, Z. Phys. 234, 231 (1970).

    Article  ADS  Google Scholar 

  26. C. Joshi, P. Ohberg, J. D. Cresser, and E. Andersson, Phys. Rev. A 90, 063815 (2014).

    Article  ADS  Google Scholar 

  27. V. N. Bogaevski and A. Povzner, Algebraic Methodsin Nonlinear Perturbation Theory (Springer, Berlin, 1991).

    Book  Google Scholar 

  28. V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Nauka, Moscow, 1977; Springer, Berlin, Heidelberg, 1989).

  29. W. H. Louissel and L. R. Walker, Phys. Rev. B 137, 204 (1965).

    Article  ADS  Google Scholar 

  30. A. M. Basharov, Phys. Rev. A 84, 013801 (2011).

    Article  ADS  Google Scholar 

  31. A. M. Basharov, Phys. Lett. A 376, 1881 (2012).

    Article  ADS  Google Scholar 

  32. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2004).

    MATH  Google Scholar 

  33. A. M. Basharov and A. I. Trubilko, J. Exp. Theor. Phys. 128, 366 (2019).

    Article  ADS  Google Scholar 

  34. R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Trubilko or A. M. Basharov.

Additional information

Translated by V. Astakhov

Technique for Calculating the Terms of the Effective Hamiltonian

Technique for Calculating the Terms of the Effective Hamiltonian

It is convenient to write the interaction operators with the broadband fields as

$$\begin{gathered} {{V}_{c}}(t) = {{\gamma }_{c}}\sum\limits_{\forall \omega \ne 0}^{} {(c{{e}^{{ - i{{\omega }_{c}}t}}} + {{c}^{\dag }}{{e}^{{i{{\omega }_{c}}t}}}){{a}_{\omega }}{{e}^{{ - i\omega t}}},} \\ {{a}_{{ - \omega }}} = a_{\omega }^{\dag },\quad \omega > 0, \\ \end{gathered} $$
$$\begin{gathered} {{V}_{r}}(t) = {{\gamma }_{r}}\sum\limits_{\forall \omega \ne 0}^{} {(r{{e}^{{ - i{{\omega }_{r}}t}}} + {{r}^{\dag }}{{e}^{{i{{\omega }_{r}}t}}}){{a}_{\omega }}{{e}^{{ - i\omega t}}},} \\ {{b}_{{ - \omega }}} = b_{\omega }^{\dag },\quad \omega > 0. \\ \end{gathered} $$

The terms changing slowly with time are then

$$V_{c}^{'}(t) = {{\gamma }_{c}}\sum\limits_{\omega \in ({{\omega }_{c}})}^{} {(ca_{\omega }^{\dag }{{e}^{{i(\omega - {{\omega }_{c}})t}}} + {{c}^{\dag }}{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}})} ,$$
$$V_{r}^{'}(t) = {{\gamma }_{r}}\sum\limits_{\omega \in ({{\omega }_{r}})}^{} {(rb_{\omega }^{\dag }{{e}^{{i(\omega - {{\omega }_{r}})t}}} + {{r}^{\dag }}{{b}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{r}})t}}})} .$$

They define the operators of the first order in coupling constants.

The rapidly changing terms can be represented as

$$V_{c}^{{''}}(t) = {{\gamma }_{c}}\sum\limits_{\forall \omega \notin ( - {{\omega }_{c}})}^{} {c{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}}} + {{\gamma }_{c}}\sum\limits_{\forall \omega \notin ({{\omega }_{c}})}^{} {{{c}^{\dag }}{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}},} $$
$$V_{r}^{{''}}(t) = {{\gamma }_{r}}\sum\limits_{\forall \omega \notin ( - {{\omega }_{r}})}^{} {r{{b}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{r}})t}}}} + {{\gamma }_{r}}\sum\limits_{\forall \omega \notin ({{\omega }_{r}})}^{} {{{r}^{\dag }}{{b}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{r}})t}}},} $$

where (ωc) is the region with sizes |ω – ωc| ≪ ωc near ω = ωc, but no less than the reciprocal rate of relaxation via this channel of coupling with the broadband field. The regions of the continuous spectrum (–ωc), (ωr), and (–ωr) are defined similarly.

Identifying the rapidly and slowly changing terms in the interaction operator between the oscillators causes no difficulties at all in the case where the oscillator frequencies are equal, ωc = ωr:

$$V_{{c - r}}^{'}(t) = g(c{{r}^{\dag }} + {{c}^{\dag }}r),$$
$$V_{{c - r}}^{{''}}(t) = g({{c}^{\dag }}{{r}^{\dag }}{{e}^{{i({{\omega }_{c}} + {{\omega }_{r}})t}}} + cr{{e}^{{ - i({{\omega }_{c}} + {{\omega }_{r}})t}}}).$$

The first-order transformation generators are found from the relations

$$\frac{{d{{S}^{{(1,0,0)}}}(t)}}{{dt}} = - {{\hbar }^{{ - 1}}}V_{{c - r}}^{{''}}(t),$$
$$\frac{{d{{S}^{{(0,1,0)}}}(t)}}{{dt}} = - {{\hbar }^{{ - 1}}}V_{c}^{{''}}(t),$$
$$\frac{{d{{S}^{{(0,0,1)}}}(t)}}{{dt}} = - {{\hbar }^{{ - 1}}}V_{r}^{{''}}(t).$$

They are fast functions of time. Under the assumption of adiabatic interaction switching, the first-order transformation generators are defined by the expressions

$${{S}^{{(1,0,0)}}}(t) = cr\frac{{g{{e}^{{ - i({{\omega }_{c}} + {{\omega }_{r}})t}}}}}{{i\hbar ({{\omega }_{c}} + {{\omega }_{r}})}} - {{c}^{\dag }}{{r}^{\dag }}\frac{{g{{e}^{{i({{\omega }_{c}} + {{\omega }_{r}})t}}}}}{{i\hbar ({{\omega }_{c}} + {{\omega }_{r}})}},$$
$${{S}^{{(0,1,0)}}}(t)\, = \,{{\gamma }_{c}}\sum\limits_{\omega \notin ( - {{\omega }_{c}})}^{} {\frac{{c{{a}_{\omega }}{{e}^{{ - i(\omega + {{\omega }_{c}})t}}}}}{{i\hbar (\omega + {{\omega }_{c}})}}} \, + \,{{\gamma }_{c}}\sum\limits_{\omega \notin ({{\omega }_{c}})}^{} {\frac{{{{c}^{\dag }}{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}}}}{{i\hbar (\omega - {{\omega }_{c}})}}} ,$$
$${{S}^{{(0,0,1)}}}(t)\, = \,{{\gamma }_{r}}\sum\limits_{\omega \notin ( - {{\omega }_{r}})}^{} {\frac{{r{{b}_{\omega }}{{e}^{{ - i(\omega + {{\omega }_{r}})t}}}}}{{i\hbar (\omega + {{\omega }_{r}})}}} \, + \,{{\gamma }_{r}}\sum\limits_{\omega \notin ({{\omega }_{r}})}^{} {\frac{{{{r}^{\dag }}{{b}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{r}})t}}}}}{{i\hbar (\omega - {{\omega }_{r}})}}} .$$

Then,

$$\begin{gathered} \text{[}{{S}^{{(1,0,0)}}}(t),V_{c}^{{''}}(t)]' = \frac{{g{{\gamma }_{c}}}}{{i\hbar ({{\omega }_{c}} + {{\omega }_{r}})}} \\ \times \sum\limits_{\omega \in ({{\omega }_{r}})}^{} {ra_{\omega }^{\dag }{{e}^{{i(\omega - {{\omega }_{r}})t}}}} + \frac{{g{{\gamma }_{c}}}}{{i\hbar ({{\omega }_{c}} + {{\omega }_{r}})}}\sum\limits_{\omega \in ({{\omega }_{r}})}^{} {{{r}^{\dag }}{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{r}})t}}}} , \\ \end{gathered} $$
$$\begin{gathered} \text{[}{{S}^{{(0,1,0)}}}(t),V_{{c - r}}^{{''}}(t)]' \\ = {{\gamma }_{c}}g\sum\limits_{\omega \in ({{\omega }_{r}})}^{} {\frac{{a_{\omega }^{\dag }r{{e}^{{i(\omega - {{\omega }_{r}})t}}}}}{{i\hbar ({{\omega }_{c}} + {{\omega }_{r}})}}} + {{\gamma }_{c}}g\sum\limits_{\omega \in ({{\omega }_{r}})}^{} {\frac{{{{a}_{\omega }}{{r}^{\dag }}{{e}^{{ - i(\omega - {{\omega }_{r}})t}}}}}{{i\hbar ({{\omega }_{c}} + {{\omega }_{r}})}}} . \\ \end{gathered} $$

As a result, the term that describes the coupling of the single-model oscillator with frequency ωr to the foreign heat bath appears in the effective Hamiltonian:

$$\begin{gathered} {{{\tilde {H}}}^{{(1,1,0)}}}(t) = - \frac{{g{{\gamma }_{c}}}}{{2\hbar {{\omega }_{c}}}}\sum\limits_{\omega \in ({{\omega }_{r}})}^{} {{{r}^{\dag }}c{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{r}})t}}}} \\ - \frac{{g{{\gamma }_{c}}}}{{2\hbar {{\omega }_{c}}}}\sum\limits_{\omega \in ({{\omega }_{r}})}^{} {ra_{\omega }^{\dag }{{e}^{{i(\omega - {{\omega }_{r}})t}}}} . \\ \end{gathered} $$

Here, we set ωc = ωr ≈ ω.

Similarly, it is easy to obtain

$$\begin{gathered} {{{\tilde {H}}}^{{(1,0,1)}}}(t) = - \frac{{g{{\gamma }_{r}}}}{{2\hbar {{\omega }_{c}}}}\sum\limits_{\omega \in ({{\omega }_{c}})}^{} {{{c}^{\dag }}{{b}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}}} \\ - \frac{{g{{\gamma }_{r}}}}{{2\hbar {{\omega }_{c}}}}\sum\limits_{\omega \in ({{\omega }_{c}})}^{} {bc_{\omega }^{\dag }{{e}^{{i(\omega - {{\omega }_{c}})t}}}} . \\ \end{gathered} $$

The operator \({{\tilde {H}}^{{(0,1,1)}}}\)(t) describes the second-order coupling between the heat baths that does not affect the open system and, therefore, below it is disregarded.

Other, possibly relevant, second-order terms are

$$\begin{gathered} {{{\tilde {H}}}^{{(2,0,0)}}}(t) = - \frac{i}{2}[{{S}^{{(1,0,0)}}}(t),V_{{c - r}}^{{''}}(t)]' \\ = - \frac{{{{g}^{2}}}}{{2\hbar {{\omega }_{c}}}}({{c}^{\dag }}c + {{r}^{\dag }}r + 1), \\ \end{gathered} $$
$${{\tilde {H}}^{{(0,2,0)}}}(t) = - \frac{i}{2}[{{S}^{{(0,1,0)}}}(t),V_{c}^{{''}}(t)]',$$
$$\begin{gathered} \text{[}{{S}^{{(0,1,0)}}}(t),V_{c}^{{''}}(t)]' \\ = \left[ {{{\gamma }_{c}}\sum\limits_{\omega \notin ( - {{\omega }_{c}})}^{} {\frac{{c{{a}_{\omega }}{{e}^{{ - i(\omega + {{\omega }_{c}})t}}}}}{{i\hbar (\omega + {{\omega }_{c}})}}} } \right. + {{\gamma }_{c}}\sum\limits_{\omega \notin ({{\omega }_{c}})}^{} {\frac{{{{c}^{\dag }}{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}}}}{{i\hbar (\omega - {{\omega }_{c}})}}} , \\ \left. {{{\gamma }_{c}}\sum\limits_{\forall \omega \notin ( - {{\omega }_{c}})}^{} {c{{a}_{\omega }}{{e}^{{ - i(\omega + {{\omega }_{c}})t}}}} + {{\gamma }_{c}}\sum\limits_{\forall \omega \notin ( - {{\omega }_{c}})}^{} {{{c}^{\dag }}{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}}} } \right] \\ = \left[ {{{\gamma }_{c}}\sum\limits_{\omega \notin ({{\omega }_{c}})}^{} {\frac{{{{c}^{\dag }}{{a}_{\omega }}{{e}^{{ - i(\omega - {{\omega }_{c}})t}}}}}{{i\hbar (\omega - {{\omega }_{c}})}},{{\gamma }_{c}}\sum\limits_{\forall \omega ' \notin ( - {{\omega }_{c}})}^{} {c{{a}_{{\omega '}}}{{e}^{{ - i(\omega ' + {{\omega }_{c}})t}}}} } } \right] \\ + \left[ {{{\gamma }_{c}}\sum\limits_{\omega \notin ( - {{\omega }_{c}})}^{} {\frac{{c{{a}_{\omega }}{{e}^{{ - i(\omega + {{\omega }_{c}})t}}}}}{{i\hbar (\omega + {{\omega }_{c}})}},{{\gamma }_{c}}\sum\limits_{\forall \omega ' \notin ({{\omega }_{c}})}^{} {{{c}^{\dag }}{{a}_{{\omega '}}}{{e}^{{ - i(\omega ' - {{\omega }_{c}})t}}}} } } \right]. \\ \end{gathered} $$

As a result, we have the contributions \({{\tilde {H}}^{{(0,2,0)}}}\)(t) and \({{\tilde {H}}^{{(0,0,2)}}}\)(t) to the effective Hamiltonian:

$$\begin{gathered} {{{\tilde {H}}}^{{(0,2,0)}}}(t) = - \gamma _{c}^{2}({{c}^{\dag }}c + 1)\sum\limits_{\forall \omega \notin ( - {{\omega }_{c}})}^{} {\frac{1}{{\hbar (\omega + {{\omega }_{c}})}}} \\ - \gamma _{c}^{2}\sum\limits_{\omega \notin ( - {{\omega }_{c}})}^{} {\frac{{a_{\omega }^{\dag }{{a}_{{\omega '}}}{{e}^{{i\omega t}}}{{e}^{{ - i\omega 't}}}}}{{2\hbar (\omega + {{\omega }_{c}})}} - \gamma _{c}^{2}\sum\limits_{\substack{ \omega ' \notin ( - {{\omega }_{c}}) \\ \forall \omega ' \notin ( - {{\omega }_{c}})} } ^{} {\frac{{a_{{\omega '}}^{\dag }{{a}_{\omega }}{{e}^{{i(\omega ' - \omega )t}}}}}{{2\hbar (\omega + {{\omega }_{c}})}},} } \\ \end{gathered} $$

while the operator \({{\tilde {H}}^{{(0,0,2)}}}\)(t) is derived from \({{\tilde {H}}^{{(0,2,0)}}}\)(t) by the simultaneous substitutions of the subscripts and the like operators cr and broadband field operators aωbω. The operators \({{\tilde {H}}^{{(0,2,0)}}}\)(t) and \({{\tilde {H}}^{{(0,0,2)}}}\)(t) can be represented by quantum counting processes similarly to [30, 31, 33]. These processes obey a different algebra of Ito differentials [33] that generalizes the well-known Hudson–Parthasarathy algebra [34]. If we use the results [30, 31, 33] of an analysis of their role, along with Wiener processes, then it can be stated that the terms \({{\tilde {H}}^{{(0,2,0)}}}\)(t) and \({{\tilde {H}}^{{(0,0,2)}}}\)(t) in the statement of the problem considered here should be neglected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubilko, A.I., Basharov, A.M. The Effective Hamiltonian Method in the Thermodynamics of Two Resonantly Interacting Quantum Oscillators. J. Exp. Theor. Phys. 129, 339–348 (2019). https://doi.org/10.1134/S1063776119080090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119080090

Navigation