Skip to main content
Log in

Semicommuting and Commuting Operators for the Heun Family

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive the most general families of first- and second-order differential operators semicommuting with the Heun class differential operators. Among these families, we classify all the families that commute with the Heun class. In particular, we find that a certain generalized Heun equation commutes with the Heun differential operator, which allows constructing a general solution of a complicated fourth-order linear differential equation with variable coefficients whose solution cannot be obtained using Maple 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Floquet, “Sur la théorie desquations diffrentielles lináires,” Ann. Sci. École Norm. Sup. (2), 8, 3–132 (1879)

    Article  MathSciNet  Google Scholar 

  2. G. Wallenberg, “Über die Vertauschbarkeit homogener linearer Differentialausdrücke,” Arc. Math. Phys. (3), 4, 252–268 (1903)

    MATH  Google Scholar 

  3. J. Schur, “Über vertauschbare lineare Differentialausdrücke,” Sitzungsber. Berliner Math. Ges., 4, 2–8 (1905).

    MATH  Google Scholar 

  4. J. L. Burchnall and T. W. Chaundy, “Commutative ordinary differential operators,” Proc. London Math. Soc., s2-21, 420–440 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  5. “Commutative ordinary differential operators,” Proc. Roy. Soc. London Ser. A, 118, 557–583 (1928)

  6. “Commutative ordinary differential operators: II. The identity Pn = Qm,” Proc. Roy. Soc. London Ser. A, 134, 471–485 (1931).

  7. R. A. Van Gorder, “Computing semi-commuting differential operators in one and multiple variables,” Math. Commun., 19, 201–219 (2014).

    MathSciNet  MATH  Google Scholar 

  8. A. Ronveaux, ed., Heun’s Differential Equations, Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

  9. S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Approach Based on Singularities, Oxford Univ. Press, Oxford (2001).

    MATH  Google Scholar 

  10. K. Heun, “Zur Theorie der Riemann’schen Functionen zweiter Ordnung mit vier Verzweigungspunkten,” Math. Ann., 33, 161–179 (1889).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Schäfke and D. Schmidt, “The connection problem for general linear ordinary differential equations at two regular singular points with applications in the theory of special functions,” SIAM J. Math. Anal., 11, 848–862 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Batic, H. Schmid, and M. Winklmeier, “The generalized Heun equation in QFT in curved spacetimes,” J. Phys. A: Math. Gen., 39, 12559–12564 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Hortaçsu, “Heun functions and their uses in physics,” in: Mathematical Physics (Proc. 13th Regl. Conf. on Mathematical Physics, Antalya, Turkey, 27–31 October 2010, U. Camci and I. Semiz, eds.), World Scientific, Singapore (2013), pp. 23–39.

    Google Scholar 

  14. P. P. Fiziev, “The Heun functions as a modern powerful tool for research in different scientific domains,” arXiv:1512.04025v1 [math-ph] (2015).

    Google Scholar 

  15. S. Chandrasekhar, The Mathematical Theory of Black Holes (Intl. Ser. Monogr. Phys., Vol. 69), Oxford Univ. Press, Oxford (1983)

    Google Scholar 

  16. R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett., 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. A. Teukolsky, “Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett., 29, 1114–1118 (1972)

    Article  ADS  Google Scholar 

  18. H. Suzuki, E. Tagasugi, and H. Umetsu, “Perturbations of Kerr–de Sitter black holes and Heun’s equations,” Prog. Theor. Phys., 100, 491–505 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. E. G. Kalnins, W. Miller Jr., G. F. Torres del Castillo, and G. C. Williams, “Special functions and perturbations of black holes,” in: Special Functions (Proc. Intl. Workshop on Special Functions–Asymptotics, Harmonic Analysis, and Mathematical Physics (IWSF’99), Hong Kong, 21–25 June 1999, C. Dunkl, M. Ismail, and R. Wong, eds.), World Scientific, Singapore (2000), pp. 140–151.

    Google Scholar 

  20. D. Batic and H. Schmid, “Heun equation, Teukolsky equation, and type-D metrics,” J. Math. Phys., 48, 042502 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. K. Bay, W. Lay, and A. Akopyan, “Avoided crossings of the quartic oscillator,” J. Phys. A: Math. Gen., 30, 3057–3067 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. U. I. Tolstikhin and M. Matsuzawa, “Hyperspherical elliptic harmonics and their relation to the Heun equation,” Phys. Rev. A, 63, 032510 (2001).

    Article  ADS  Google Scholar 

  23. R. L. Hall, N. Saad, and K. D. Sen, “Soft-core Coulomb potential and Heun’s differential equation,” J. Math. Phys., 51, 022107 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. D. Batic, R. Williams, and M. Nowakowski, “Potentials of the Heun class,” J. Phys. A: Math. Theor., 46, 245204 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. Batic, D. Mills-Howell, and M. Nowakowski, “Potentials of the Heun class: The triconfluent case,” J. Math. Phys., 56, 052106 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G. Natanson, “Heun-polynomial representation of regular-at-infinity solutions for the basic susy ladder of hyperbolic P¨oschl–Teller potentials starting from the reflectionless symmetric potential well,” arXiv:1410.1515v1 [math-ph] (2014).

    Google Scholar 

  27. P. S. Epstein, “The Stark effect from the point of view of Schroedinger’s quantum theory,” Phys. Rev., 28, 695–710 (1926).

    Article  ADS  MATH  Google Scholar 

  28. V. Balan, A. M. Manukyan, E. M. Ovsiyuk, V. M. Red’kov, and O. V. Veko, “Confluent Heun functions and the Coulomb problem for spin 1/2 particle in Minkowski space,” arXiv:1410.8300v1 [math-ph] (2014)

    MATH  Google Scholar 

  29. T. A. Ishkhanyan, Y. Pashayan-Leroy, M. R. Gevorgyan, C. Leroy, and A. M. Ishkhanyan, “Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions,” J. Contemp. Phys., 51, 229–236 (2016)

    Article  Google Scholar 

  30. A. H. Wilson, “A generalised spheroidal wave equation,” Proc. Roy. Soc. London Ser. A, 118, 617–635 (1928)

    Article  ADS  MATH  Google Scholar 

  31. T. T. Truong and D. Bazzali, “Exact low-lying states of two interacting equally charged particles in a magnetic field,” Phys. Lett. A, 269, 186–193 (2000)

    Article  ADS  Google Scholar 

  32. A. Ralko and T. T. Truong, “Behaviour of three charged particles on a plane under perpendicular magnetic field,” J. Phys. A: Math. Gen., 35, 9671–9683 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. E. W. Leaver, “Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics,” J. Math. Phys., 27, 1238–1265 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. D. Batic and R. Williams, “The two-point connection problem for a sub-class of the Heun equation,” J. Inequal. Spec. Funct., 6, 1–11 (2015).

    MathSciNet  MATH  Google Scholar 

  35. P. P. Fiziev, “A new approach to the connection problem for local solutions to the general Heun equation,” arXiv:1606.08539v2 [math-ph] (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Batic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batic, D., Mills, D. & Nowakowski, M. Semicommuting and Commuting Operators for the Heun Family. Theor Math Phys 195, 494–512 (2018). https://doi.org/10.1134/S0040577918040025

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918040025

Keywords

Navigation