Skip to main content
Log in

Critical Point in the Problem of Maximizing the Transition Probability Using Measurements in an n-Level Quantum System

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of maximizing the transition probability in an n-level quantum system from a given initial state to a given final state using nonselective quantum measurements. We find a sequence of measurements that is a critical point of the transition probability and, moreover, a local maximum in each variable on the set of one-dimensional projectors. We consider the class of one-dimensional projectors because these projectors describe the measurements of populations of pure states of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics, Wiley, New York (2000).

    Google Scholar 

  2. M. Shapiro and P. W. Brumer, Principles of the Quantum Control of Molecular Processes, Wiley, Hoboken, N. J. (2003).

    MATH  Google Scholar 

  3. D. J. Tannor, Introduction to Quantum Mechanics: A Time Dependent Perspective, University Science Books, Sausalito, Calif. (2007).

    Google Scholar 

  4. D. D’Alessandro, Introduction to Quantum Control and Dynamics, Chapman & Hall, Boca Raton, Fla. (2008).

    MATH  Google Scholar 

  5. V. S. Letokhov, Laser Control of Atoms and Molecules, Oxford Univ. Press, New York (2007).

    Google Scholar 

  6. C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena,” Adv. Chem. Phys., 148, 1–76 (2012).

    Google Scholar 

  7. S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: Quantum optimal control,” Eur. Phys. J. D, 69, 279 (2015).

    Article  ADS  Google Scholar 

  8. L. Accardi, S. V. Kozyrev, and A. N. Pechen, “Coherent quantum control of Λ-atoms through the stochastic limit,” in: Quantum Information and Computing (QP–PQ: Quantum Probability and White Noise Analysis, Vol. 19, L. Accardi, M. Ohya, and N. Watanabe, eds.), World Scientific, Singapore (2006), pp. 1–17.

    MATH  Google Scholar 

  9. A. I. Zenchuk and S. I. Doronin, “Remote control of quantum correlations in a two-qubit receiver by a three-qubit sender,” Theor. Math. Phys., 188, 1259–1271 (2016).

    Article  MATH  Google Scholar 

  10. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, “Some features of boron isotopes separation by the laser-assisted retardation of condensation method in multipass irradiation cell implemented as a resonator,” IEEE J. Quantum Electron., 52, 1400208 (2016).

    Article  Google Scholar 

  11. S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, and I. V. Volovich, “Flows in nonequilibrium quantum systems and quantum photosynthesis,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20, 1750021 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. S. Holevo, Statistical Structure of Quantum Theory (Lect. Notes Phys. Monogr., Vol. 67), Springer, Berlin (2001).

  13. M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano-and Bio-Systems, Springer, Dordrecht (2011).

    Book  MATH  Google Scholar 

  14. I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Proc. Steklov Inst. Math., 294, 241–251 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Trushechkin, “Semiclassical evolution of quantum wave packets on the torus beyond the Ehrenfest time in terms of Husimi distributions,” J. Math. Phys., 58, 062102 (2017); arXiv:1607.07572v1 [quant-ph] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. N. Pechen, N. B. Ilin, F. Shuang, and H. Rabitz, “Quantum control by von Neumann measurements,” Phys. Rev. A, 74, 052102 (2006).

    Article  ADS  Google Scholar 

  17. H. W. Wiseman, “Quantum control: Squinting at quantum systems,” Nature, 470, 178–179 (2011).

    Article  ADS  Google Scholar 

  18. J. Gough, V. P. Belavkin, and O. G. Smolyanov, “Hamilton–Jacobi–Bellman equations for quantum optimal feedback control,” J. Opt. B: Quantum Semiclass. Opt., 7, S237–S244 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Vilela Mendes and V. I. Man’ko, “Quantum control and the Strocchi map,” Phys. Rev. A, 67, 053404 (2003).

    Article  ADS  Google Scholar 

  20. B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys., 18, 756–763 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. P. Balachandran and S. M. Roy, “Quantum anti-Zeno paradox,” Phys. Rev. Lett., 84, 4019–4022 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Shuang, A. N. Pechen, T. S. Ho, and H. Rabitz, “Observation-assisted optimal control of quantum dynamics,” J. Chem. Phys., 126, 134303 (2007).

    Article  ADS  Google Scholar 

  23. M. S. Blok, C. Bonato, M. L. Markham, D. J. Twitchen, V. V. Dobrovitski, and R. Hanson, “Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback,” Nature Phys., 10, 189–193 (2014).

    Article  ADS  Google Scholar 

  24. G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A. Lidar, “Zeno effect for quantum computation and control,” Phys. Rev. Lett., 108, 080501 (2012).

    Article  ADS  Google Scholar 

  25. A. N. Pechen and A. S. Trushechkin, “Measurement-assisted Landau–Zener transitions,” Phys. Rev. A, 91, 052316 (2015).

    Article  ADS  Google Scholar 

  26. M. G. Ivanov, “On uniqueness of the quantum measurement theory for exact measurements with discrete spectra [in Russian],” Tr. MFTI, 8, No. 1(29), 170–178 (2016).

    Google Scholar 

  27. M. B. Menskii, “Evolution of a quantum system subject to continuous measurement,” Theor. Math. Phys., 75, 357–365 (1988).

    Article  MathSciNet  Google Scholar 

  28. M. Campisi, P. Talkner, and P. Hanngi, “Influence of measurements on the statistics of work performed on a quantum system,” Phys. Rev. E, 83, 041114 (2011).

    Article  ADS  Google Scholar 

  29. A. Hentschel and B. C. Sanders, “Machine learning for precise quantum measurement,” Phys. Rev. Lett., 104, 063603 (2010).

    Article  ADS  Google Scholar 

  30. H. Rabitz, H. Hsieh, and C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science, 303, 1998–2001 (2004).

    Article  ADS  Google Scholar 

  31. T. S. Ho and H. Rabitz, “Why do effective quantum controls appear easy to find?” J. Photochem. Photobiol. A, 180, 226–240 (2006).

    Article  Google Scholar 

  32. P. de Fouquieres and S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16, 1350021 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Rach, M. M. Müller, T. Calarco, and S. Montangero, “Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape,” Phys. Rev. A, 92, 062343 (2015).

    Article  ADS  Google Scholar 

  34. A. N. Pechen and N. B. Il’in, “On critical points of the objective functional for maximization of qubit observables,” Russ. Math. Surveys, 70, 782–784 (2015).

    Article  ADS  MATH  Google Scholar 

  35. A. N. Pechen, “On the speed gradient method for generating unitary quantum operations for closed quantum systems,” Russ. Math. Surveys, 71, 597–599 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A. N. Pechen and N. B. Il’in, “Control landscape for ultrafast manipulation by a qubit,” J. Phys. A: Math. Theor., 50, 075301 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. A. N. Pechen and N. B. Il’in, “On the problem of maximizing the transition probability in an n-level quantum system using nonselective measurements,” Proc. Steklov Inst. Math., 294, 233–240 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Il’in.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, N.B., Pechen, A.N. Critical Point in the Problem of Maximizing the Transition Probability Using Measurements in an n-Level Quantum System. Theor Math Phys 194, 384–389 (2018). https://doi.org/10.1134/S0040577918030066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918030066

Keywords

Navigation