Skip to main content
Log in

Bogoliubov Quasiaverages: Spontaneous Symmetry Breaking and the Algebra of Fluctuations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present arguments supporting the use of the Bogoliubov method of quasiaverages for quantum systems. First, we elucidate how it can be used to study phase transitions with spontaneous symmetry breaking (SSB). For this, we consider the example of Bose–Einstein condensation in continuous systems. Analysis of different types of generalized condensations shows that the only physically reliable quantities are those defined by Bogoliubov quasiaverages. In this connection, we also solve the Lieb–Seiringer–Yngvason problem. Second, using the scaled Bogoliubov method of quasiaverages and considering the example of a structural quantum phase transition, we examine a relation between SSB and critical quantum fluctuations. We show that the quasiaverages again provide a tool suitable for describing the algebra of critical quantum fluctuation operators in both the commutative and noncommutative cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, New York (1969).

    MATH  Google Scholar 

  2. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics: 1. C*- and W*- Algebras, Symmetry Groups, Decomposition of States, Springer, Berlin (1987).

    Book  MATH  Google Scholar 

  3. G. L. Sewell, Quantum Theory of Collective Phenomena, Oxford Univ. Press, New York (1986).

    Google Scholar 

  4. N. N. Bogoliubov, Collection of Scientific Works in Twelve Volumes: Statistical Mechanics [in Russian], Vol. 8, Theory of Nonideal Bose Gas, Superfluidity, and Superconductivity 1946–1992, Nauka, Moscow (2007).

    Google Scholar 

  5. N. N. Bogoliubov, Collection of Scientific Works in Twelve Volumes: Statistical Mechanics [in Russian], Vol. 6, Lectures on Quantum Statistics: Quasiaverages in Statistical Mechanics Problems, Nauka, Moscow (2007); English transl. prev. ed.: Lectures on Quantum Statistics, Vol. 2, Quasi-Averages, Gordon and Breach, New York (1970).

    Google Scholar 

  6. E. H. Lieb, R. Seiringer, and J. Yngvason, “Bose–Einstein condensation and spontaneous symmetry breaking,” Rep. Math. Phys., 59, 389–399 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. van den Berg, J. T. Lewis, and J. V. Pulè, “A general theory of Bose–Einstein condensation,” Helv. Phys. Acta, 59, 1271–1288 (1986).

    MathSciNet  Google Scholar 

  8. M. Beau and V. A. Zagrebnov, “The second critical density and anisotropic generalised condensation,” Condens. Matter Phys., 13, 23003 (2010).

    Article  Google Scholar 

  9. D. N. Zubarev, “Boundary conditions for statistical operators in the theory of nonequilibrium processes and quasiaverages,” Theor. Math. Phys., 3, 505–512 (1970).

    Article  MathSciNet  Google Scholar 

  10. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Consultants Bureau, New York (1974).

    Google Scholar 

  11. D. N. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic theory, Akademie, Berlin (1996).

    MATH  Google Scholar 

  12. A. F. Verbeure, Many-Body Boson Systems: Half a Century Later, Springer, Berlin (2011).

    Book  MATH  Google Scholar 

  13. M. van den Berg, J. T. Lewis, and M. Lunn, “On the general theory of Bose–Einstein condensation and the state of the free boson gas,” Helv. Phys. Acta, 59, 1289–1310 (1986).

    MathSciNet  Google Scholar 

  14. V. A. Zagrebnov and J.-B. Bru, “The Bogoliubov model of weakly imperfect Bose gas,” Phys. Rep., 350, 291–434 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II, Springer, Berlin (1997).

    Book  MATH  Google Scholar 

  16. Th. Jaeck and V. A. Zagrebnov, “Exactness of the Bogoliubov approximation in random external potentials,” J. Math.Phys., 51, 123306 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. V. A. Zagrebnov, “The Bogoliubov c-number approximation for random boson systems,” Proc. Kiev Inst. Math., 11, 123–140 (2014).

    MATH  Google Scholar 

  18. J. Ginibre, “On the asymptotic exactness of the Bogoliubov approximation for many boson systems,” Comm. Math. Phys., 8, 26–51 (1968).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. E. H. Lieb, R. Seiringer, and J. Yngvason, “Justification of c-number substitutions in bosonic hamiltonians,” Phys. Rev. Lett., 94, 080401 (2005).

    Article  ADS  Google Scholar 

  20. A. Süt˝o, “Equivalence of Bose–Einstein condensation and symmetry breaking,” Phys. Rev. Lett., 94, 080402 (2005).

    Article  ADS  Google Scholar 

  21. E. H. Lieb, “The classical limit of quantum spin systems,” Commun. Math. Phys., 31, 327–340 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R. B. Griffiths, “Spontaneous magnetization in idealized ferromagnets,” Phys. Rev., 152, 240–246 (1966).

    Article  ADS  Google Scholar 

  23. R. V. Kadison, “States and representations,” Trans. Amer. Math. Soc., 103, 304–319 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Verbeure and V. A. Zagrebnov, “Phase transitions and algebra of fluctuation operators in an exactly soluble model of a quantum anharmonic crystal,” J. Stat. Phys., 69, 329–359 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. Goderis, A. Verbeure, and P. Vets, “Non-commutative central limits,” Probab. Theory Related Fields, 82, 527–544 (1987).

    Article  MATH  Google Scholar 

  26. D. Goderis, A. Verbeure, and P. Vets, “Dynamics of fluctuations for quantum lattice systems,” Commun. Math. Phys., 128, 533–549 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. D. Goderis and P. Vets, “Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations,” Commun. Math. Phys., 122, 249–265 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Requardt, “Fluctuation operators and spontaneous symmetry breaking,” J. Math. Phys., 43, 351–372 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. I. G. Brankov, V. A. Zagrebnov, and N. S. Tonchev, “Description of limit gibbs states for Curie–Weiss–Ising model,” Theor. Math. Phys., 66, 72–80 (1986).

    Article  MathSciNet  Google Scholar 

  30. V. L. Aksenov, N. M. Plakida, and S. Stamenkovič, Neutron Scattering by Ferroelectrics, World Scientific, Singapore (1990).

    Google Scholar 

  31. R. A. Minlos, E. A. Pechersky, and V. A. Zagrebnov, “Analyticity of the Gibbs state for a quantum anharmonic crystal: No order parameter,” Ann. Henri Poincaré, 3, 921–938 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, and M. Röckner, The Statistical Mechanics of Quantum Lattice Systems: A Path Integral Approach (EMS Tracts Math., Vol. 8), European Math. Soc., Zürich (2009).

    Book  MATH  Google Scholar 

  33. N. N. Bogolyubov Jr., I. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, “Some classes of exactly soluble models of problems in quantum statistical mechanics: The method of the approximating Hamiltonian,” Russ. Math. Surveys, 39, 1–50 (1984).

    Google Scholar 

  34. N. M. Plakida and N. S. Tonchev, “Exactly solvable d-dimensional model of a structural phase transition,” Theor. Math. Phys., 63, 504–511 (1985).

    Article  MathSciNet  Google Scholar 

  35. A. Verbeure and V. A. Zagrebnov, “No-go theorem for quantum structural phase transitions,” J. Phys. A: Math. Gen., 28, 5415–5421 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. P. Joussot and V. A. Zagrebnov, “Quantum critical fluctuations in ferroelectric model: Quasi-average approach,” J. Math. Phys., 39, 921–930 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. W. F. Wreszinski and V. A. Zagrebnov, “On ergodic states, spontaneous symmetry breaking, and the Bogoliubov quasi-averages,” arXiv:1607.03024v2 [math-ph] (2016).

    Google Scholar 

  38. G. L. Sewell and W. F. Wreszinski, “On the mathematical theory of superfluidity,” J. Phys. A: Math. Theor., 42, 015207 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. M. Fannes, J. V. Pulè, and A. Verbeure, “On Bose condensation,” Helv. Phys. Acta, 55, 391–399 (1982).

    MathSciNet  MATH  Google Scholar 

  40. J. V. Pulé, A. F. Verbeure, and V. A. Zagrebnov, “On nonhomogeneous Bose condensation,” J. Math. Phys., 46, 083301 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. N. M. Hugenholtz, “States and representations in statistical mechanics,” in: Mathematics of Contemporary Physics (R. F. Streater, ed.), Acad. Press, London (1972), pp. 145–193.

    Google Scholar 

  42. W. F. Wreszinski, “Passivity of ground states of quantum systems,” Rev. Math. Phys., 17, 1–14 (2005).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. F. Wreszinski.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 194, No. 1, pp. 187–223, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wreszinski, W.F., Zagrebnov, V.A. Bogoliubov Quasiaverages: Spontaneous Symmetry Breaking and the Algebra of Fluctuations. Theor Math Phys 194, 157–188 (2018). https://doi.org/10.1134/S0040577918020010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918020010

Keywords

Navigation