Skip to main content
Log in

Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogoliubov, Problems of Dynamical Theory in Statistical Physics [in Russian], Gostekhteorizdat, Moscow (1946).

    Google Scholar 

  2. N. N. Bogoliubov, “Problems of dynamical theory in statistical physics,” in: Studies in Statistical Mechanics (J. de Boer and G. E. Uhlenbeck, eds.), Vol. 1, North-Holland, Amsterdam (1962), pp. 1–118.

    Google Scholar 

  3. N. N. Bogoliubov, “On the stochastic processes in the dynamical systems,” Sov. J. Part. Nucl., 9, 205 (1978).

    ADS  MathSciNet  Google Scholar 

  4. D. Ya. Petrina, Stochastic Dynamics and Boltzmann Hierarchy (De Gruyter Expos. Math., Vol. 48), Walter de Gruyter, Berlin (2009).

    Book  MATH  Google Scholar 

  5. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Consultants Bureau, New York, London (1974).

    Google Scholar 

  6. J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics, Prentice Hall, New York (1989).

    Google Scholar 

  7. B. C. Eu, Nonequilibrium Statistical Mechanics: Ensemble Method (Fund. Theor. Phys., Vol. 93), Kluwer, Dordrecht (1998).

    Google Scholar 

  8. R. Zwanzig, “Time-correlation functions and transport coefficients in statistical mechanics,” Ann. Rev. Phys. Chem., 16, 67–102 (1965).

  9. R. Zwanzig, “The concept of irreversibility in statistical mechanics,” Pure and Appl. Chem., 22, 371–378 (1970).

    Article  Google Scholar 

  10. R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, Oxford, New York (2001).

    MATH  Google Scholar 

  11. G. Gallavotti, Nonequilibrium and Irreversibility, Springer, Cham (2014).

    Book  MATH  Google Scholar 

  12. V. V. Kozlov, Gibbs Ensembles and Nonequilibrium Statistical Mechanics [in Russian], RKhD, Moscow (2008).

    Google Scholar 

  13. V. Vedenyapin, A. Sinitsyn, and E. Dulov, Kinetic Boltzmann, Vlasov, And Related Equations, Elsevier, Amsterdam (2011).

    MATH  Google Scholar 

  14. D. N. Zubarev, V. G. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic Theory, Akademie, Berlin (1996); Vol. 2, Relaxation and Hydrodynamic Processes, Akademie, Berlin (1997).

    MATH  Google Scholar 

  15. A. L. Kuzemsky, Statistical Mechanics and the Physics of Many-Particle Model Systems, World Scientific, Singapore (2017).

    Book  MATH  Google Scholar 

  16. A. L. Kuzemsky, “Theory of transport processes and the method of the nonequilibrium statistical operator,” Internat. J. Modern Phys. B, 21, 2821–2949 (2007).

    Article  ADS  MATH  Google Scholar 

  17. A. L. Kuzemsky, “Generalized kinetic and evolution equations in the approach of the nonequilibrium statistical operator,” Internat. J. Modern Phys. B, 19, 1029–1059 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. L. Kuzemsky, “Electronic transport in metallic systems and generalized kinetic equations,” Internat. J. Modern Phys. B, 25, 3071–3183 (2011).

    Article  ADS  MATH  Google Scholar 

  19. M. Toda, R. Kubo, and N. Saitô, Statistical Physics I: Equilibrium Statistical Mechanics, Springer, Berlin (1992).

    Book  MATH  Google Scholar 

  20. M. Toda, R. Kubo, and N. Saitô, Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer, Berlin (1991).

    MATH  Google Scholar 

  21. J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundations of Thermodynamics, Dover, New York (1960).

    MATH  Google Scholar 

  22. N. N. Bogolyubov, D. Ya. Petrina, and B. I. Khatset, “Mathematical description of the equilibrium state of classical systems on the basis of the canonical ensemble formalism,” Theor. Math. Phys., 1, 194–212 (1969).

    Article  Google Scholar 

  23. A. L. Kuzemsky, “Thermodynamic limit in statistical physics,” Internat. J. Modern Phys. B, 28, 1430004 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. A. Minlos, Introduction to Mathematical Statistical Physics (Univ. Lect. Ser., Vol. 19), Amer. Math. Soc., Providence, R. I. (2000).

    Google Scholar 

  25. R. Zwanzig, “Ensemble method in the theory of irreversibility,” J. Chem. Phys., 33, 1338–1341 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  26. P. G. Bergmann and J. L. Lebowitz, “New approach to nonequilibrium processes,” Phys. Rev., 99, 578–587 (1955).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. L. Lebowitz and P. G. Bergmann, “Irreversible Gibbsian ensembles,” Ann. Phys. (N. Y.), 1, 1–23 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. J. L. Lebowitz, “Stationary nonequilibrium Gibbsian ensembles,” Phys. Rev., 114, 1192–1202 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. L. Lebowitz and A. Shimony, “Statistical mechanics of open systems,” Phys. Rev., 128, 1945–1958 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations [in Russian], Nauka, Moscow (1974); English transl., Gordon and Breach, New York (1961).

    Google Scholar 

  31. Yu. A. Mitropolsky, Averaging Method in Nonlinear Mechanics, Naukova Dumka, Kiev (1971).

    Google Scholar 

  32. A. M. Samoilenko, “N. N. Bogolyubov and non-linear mechanics,” Russ. Math. Surveys, 49, 109–154 (1994).

    Article  ADS  MATH  Google Scholar 

  33. V. I. Arnol’d, “From averaging to statistical physics,” Proc. Steklov Inst. Math., 228, 184–190 (2000).

    MathSciNet  MATH  Google Scholar 

  34. N. N. Bogoliubov, “On some problems connected with the foundations of statistical mechanics,” in: Proc. Intl. Symp. on Selected Topics in Statistical Mechanics (N. N. Bogolyubov Jr. et al., eds.), Joint Inst. Nucl. Res., Dubna (1982), pp. 9–18.

    Google Scholar 

  35. N. N. Bogoliubov and D. N. Zubarev, “The method of asymptotic approximation for systems with revolving phase and its application to the motion of charged particles in a magnetic field [in Russian],” Ukr. Matem. Zhur., 7, 5–17 (1955).

    Google Scholar 

  36. V. V. Kozlov and O. G. Smolyanov, “Information entropy in problems of classical and quantum statistical mechanics,” Dokl. Math., 74, 910–913 (2006).

    Article  MATH  Google Scholar 

  37. E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge Univ. Press, New York (2003).

    Book  MATH  Google Scholar 

  38. L. M. Martyushev and V. D. Seleznev, “Maximum entropy production principle in physics, chemistry, and biology,” Phys. Rep., 426, 1–45 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  39. A. L. Kuzemsky, “Probability, information, and statistical physics,” Internat. J. Theor. Phys., 55, 1378–1404 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. N. N. Bogoliubov, “Quasiaverages in problems of statistical mechanics,” in: Statistical Physics and Quantum Field Theory (N. N. Bogoliubov, ed.) [in Russian], Nauka, Moscow (1973), pp. 7–80.

    Google Scholar 

  41. D. N. Zubarev, “Boundary conditions for statistical operators in the theory of nonequilibrium processes and quasiaverages,” Theor. Math. Phys., 3, 505–512 (1970).

    Article  MathSciNet  Google Scholar 

  42. A. L. Kuzemsky, “Bogoliubov’s vision: Quasiaverages and broken symmetry to quantum protectorate and emergence,” Internat. J. Modern Phys. B, 24, 835–935 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. D. N. Zubarev and V. P. Kalashnikov, “Extremal properties of the nonequilibrium statistical operator,” Theor. Math. Phys., 1, 108–118 (1969).

    Article  Google Scholar 

  44. D. N. Zubarev and V. P. Kalashnikov, “Construction of statistical operators for nonequilibrium processes,” Theor. Math. Phys., 3, 395–401 (1971).

    Article  Google Scholar 

  45. D. N. Zubarev and V. P. Kalashnikov, “Derivation of the nonequilibrium statistical operator from the extremum of the information entropy,” Phys., 46, 550–554 (1970).

    ADS  MathSciNet  MATH  Google Scholar 

  46. L. A. Pokrovskii, “Derivation of generalized kinetic equations with nonequlibrium statistical operator,” Sov. Phys. Dokl., 13, 1154 (1968).

    Google Scholar 

  47. K. Valasek and A. L. Kuzemsky, “Kinetic equations for a system weakly coupled to a thermal bath,” Theor. Math. Phys., 4, 826–832 (1970).

    Article  Google Scholar 

  48. V. V. Kozlov, “Gibbs ensembles, equidistribution of the energy of sympathetic oscillators, and statistical models of thermostat,” Regul. Chaotic Dyn., 13, 141–154 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. A. L. Kuzemsky, “Statistical theory of spin relaxation and diffusion in solids,” J. Low Temp. Phys., 143, 213–256 (2006).

    Article  ADS  Google Scholar 

  50. K. Valasek, D. N. Zubarev, and A. L. Kuzemsky, “Schrödinger-type equation with damping for a dynamical system in a thermal bath,” Theor. Math. Phys., 5, 1150–1158 (1970).

    Article  Google Scholar 

  51. A. L. Kuzemsky, “Works of D. I. Blokhintsev and the development of quantum physics,” PEPAN, 39, 137–172 (2008).

    Google Scholar 

  52. D. I. Blokhintsev, Collected Papers [in Russian], Vol. 1, Fizmatlit, Moscow (2009).

    Google Scholar 

  53. N. N. Bogolubov and N. N. Bogolubov Jr., Aspects of Polaron Theory [in Russian], Fizmatlit, Moscow (2004); English transl., World Scientific, Singapore (2008).

    MATH  Google Scholar 

  54. A. L. Kuzemsky and A. Pawlikowski, “Note on the diagonalization of a quadratic linear form defined on the set of second quantization fermion operators,” Rep. Math. Phys., 3, 201–207 (1972).

    Article  ADS  Google Scholar 

  55. A. L. Kuzemsky and K. Walasek, “On the calculation of the natural width of spectral lines of atom by the methods of nonequilibrium statistical mechanics,” Lett. Nuovo Cimento, 2, 953–956 (1971).

    Article  Google Scholar 

  56. S. Bloom and H. Margenau, “Quantum theory of spectral line broadening,” Phys. Rev., 90, 791–794 (1953).

    Article  ADS  MATH  Google Scholar 

  57. D. I. Blokhintsev, “Calculation of the natural width of spectral lines by the stationary method [in Russian],” Zh. Eksp. Teor. Fiz., 16, 965–967 (1946).

    Google Scholar 

  58. A. L. Kuzemsky, “Generalized Van Hove formula for scattering of neutrons by the nonequilibrium statisticalmedium,” Internat. J. Modern Phys. B, 26, 1250092 (2012).

    Article  ADS  MATH  Google Scholar 

  59. W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering, Oxford Univ. Press, Oxford (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kuzemsky.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 194, No. 1, pp. 39–70, January, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzemsky, A.L. Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations. Theor Math Phys 194, 30–56 (2018). https://doi.org/10.1134/S004057791801004X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791801004X

Keywords

Navigation