Skip to main content
Log in

Waking and scrambling in holographic heating up

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Using holographic methods, we study the heating up process in quantum field theory. As a holographic dual of this process, we use absorption of a thin shell on a black brane. We find the explicit form of the time evolution of the quantum mutual information during heating up from the temperature Ti to the temperature Tf in a system of two intervals in two-dimensional space–time. We determine the geometric characteristics of the system under which the time dependence of the mutual information has a bell shape: it is equal to zero at the initial instant, becomes positive at some subsequent instant, further attains its maximum, and again decreases to zero. Such a behavior of the mutual information occurs in the process of photosynthesis. We show that if the distance x between the intervals is less than log 2/2πTi, then the evolution of the holographic mutual information has a bell shape only for intervals whose lengths are bounded from above and below. For sufficiently large x, i.e., for x < log 2/2πTi, the bell-like shape of the time dependence of the quantum mutual information is present only for sufficiently large intervals. Moreover, the zone narrows as Ti increases and widens as Tf increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys., 2, 231–252 (1998) arXiv:hep-th/9711200v3 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett B., 428, 105–114 (1998) arXiv:hep-th/9802109v2 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys., 2, 253–291 (1998) arXiv:hep-th/ 9802150v2 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. I. Ya. Aref’eva, “Holographic approach to quark-gluon plasma in heavy ion collisions,” Phys. Usp., 57, 527–555 (2014)

    Article  Google Scholar 

  5. I. Aref’eva, “Multiplicity and thermalization time in heavy-ions collisions,” Europhys. J. Web Conf., 125, 01007 (2016).

    Article  Google Scholar 

  6. O. DeWolfe, S. S. Gubser, C. Rosen, and D. Teaney, “Heavy ions and string theory,” Prog. Part. Nucl. Phys., 75, 86–132 (2014) arXiv:1304.7794v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  7. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD, and heavy ion collisions,” arXiv:1101.0618v2 [hep-th] (2011).

    MATH  Google Scholar 

  8. S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Q. Grav., 26, 224002 (2009) arXiv:0903.3246v3 [hep-th] (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. R. Easther, R. Flauger, P. McFadden, and K. Skenderis, “Constraining holographic inflation with WMAP,” JCAP, 1109, 030 (2011) arXiv:1104.2040v2 [astro-ph.CO] (2011).

    Article  ADS  Google Scholar 

  10. I. Ya. Aref’eva and I. Volovich, “Holographic photosynthesis,” arXiv:1603.09107v2 [hep-th] (2016).

    Google Scholar 

  11. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys., 2, 505–532 (1998) arXiv:hep-th/9803131v2 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP, 0304, 021 (2003) arXiv:hep-th/0106112v6 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  13. U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski, “Black hole formation in AdS and thermalization on the boundary,” JHEP, 0002, 039 (2000) arXiv:hep-th/9912209v2 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, “Holographic thermalization,” Phys. Rev. D, 84, 026010 (2011) arXiv:1103.2683v1 [hep-th] (2011).

    Article  ADS  Google Scholar 

  15. J. Aparício and E. López, “Evolution of two-point functions from holography,” JHEP, 1112, 082 (2011) arXiv:1109.3571v1 [hep-th] (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. I. Ya. Arefeva and I. V. Volovich, “On holographic thermalization and dethermalization of quark–gluon plasma,” arXiv:1211.6041v1 [hep-th] (2012)

    Google Scholar 

  17. “Holographic thermalization,” Theor. Math. Phys., 174, 186–196 (2013).

  18. I. Aref’eva, A. Bagrov, and A. S. Koshelev, “Holographic thermalization from Kerr–AdS,” JHEP, 1307, 170 (2013) arXiv:1305.3267v2 [hep-th] (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. H. Liu and S. J. Suh, “Entanglement tsunami: Universal scaling in holographic thermalization,” Phys. Rev. Lett., 112, 011601 (2014) arXiv:1305.7244v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  20. T. Albash and C. V. Johnson, “Evolution of holographic entanglement entropy after thermal and electromagnetic quenches,” New J. Phys., 13, 045017 (2011) arXiv:1008.3027v2 [hep-th] (2010).

    Article  ADS  Google Scholar 

  21. V. Keränen, E. Keski-Vakkuri, and L. Thorlacius, “Thermalization and entanglement following a non-relativistic holographic quench,” Phys. Rev. D, 85, 026005 (2012) arXiv:1110.5035v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  22. I. Ya. Aref’eva, “Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model,” Theor. Math. Phys., 184, 1239–1255 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Ya. Aref’eva, A. A. Golubtsova, and E. Gourgoulhon, “Analytic black branes in Lifshitz-like backgrounds and thermalization,” JHEP, 1609, 142 (2016) arXiv:1601.06046v3 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano-and Bio-Systems, Springer, Dordrecht (2011).

    Book  MATH  Google Scholar 

  25. I. Ya. Aref’eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic limit method and interference in quantum manyparticle systems,” Theor. Math. Phys., 183, 782–799 (2015).

    Article  MATH  Google Scholar 

  26. I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Proc. Steklov Inst. Math., 294, 241–251 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light,” Phys. Lett. A, 380, 56–58 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. Allais and E. Tonni, “Holographic evolution of the mutual information,” JHEP, 1201, 102 (2012) arXiv: 1110.1607v1 [hep-th] (2011).

    Article  ADS  MATH  Google Scholar 

  29. D. Ageev, “Holographic Wilson loops in anisotropic quark–gluon plasma,” Europhys. J. Web Conf., 125, 04007 (2016).

    Article  Google Scholar 

  30. V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps, and F. Galli, “Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories,” Phys. Rev. D, 84, 105017 (2011) arXiv:1110.0488v2 [hep-th] (2011).

    Article  ADS  Google Scholar 

  31. M. Alishahiha, M. R. Mohammadi Mozaffar, and M. R. Tanhayi, “On the time evolution of holographic n-partite information,” JHEP, 1509, 165 (2015) arXiv:1406.7677v4 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory,” Phys. Rev. Lett., 96, 181602 (2006) arXiv:hep-th/0603001v2 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S. Sotiriadis, P. Calabrese, and J. Cardy, “Quantum quench from a thermal initial state,” Europhys. Lett., 87, 20002 (2009) arXiv:0903.0895v2 [cond-mat.stat-mech] (2009).

    Article  ADS  Google Scholar 

  34. K. Bradler, M. M. Wilde, S. Vinjanampathy, and D. B. Uskov, “Identifying the quantum correlations in lightharvesting complexes,” Phys. Rev. A, 82, 062310 (2010) arXiv:0912.5112v2 [quant-ph] (2009).

    Article  ADS  Google Scholar 

  35. D. S. Ageev and I. Ya. Aref’eva, “Memory loss in holographic non-equilibrium heating,” arXiv:1704.07747v1 [hep-th] (2017).

    Google Scholar 

  36. D. Galante and M. Schvellinger, “Thermalization with a chemical potential from AdS spaces,” JHEP, 1507, 096 (2012) arXiv:1205.1548v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  37. E. Caceres and A. Kundu, “Holographic thermalization with chemical potential,” JHEP, 1209, 055 (2012) arXiv:1205.2354v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  38. M. Mezei, “On entanglement spreading from holography,” JHEP, 1705, 064 (2017) arXiv:1612.00082v1 [hepth] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Ageev.

Additional information

This research was supported by a grant from the Russian Science Foundation (Project No. 14-11-00687).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, D.S., Aref’eva, I.Y. Waking and scrambling in holographic heating up. Theor Math Phys 193, 1534–1546 (2017). https://doi.org/10.1134/S0040577917100105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917100105

Keywords

Navigation