Skip to main content
Log in

Reanalysis of an open problem associated with the fractional Schrödinger equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

It was recently shown that there are some difficulties in the solution method proposed by Laskin for obtaining the eigenvalues and eigenfunctions of the one-dimensional time-independent fractional Schrödinger equation with an infinite potential well encountered in quantum mechanics. In fact, this problem is still open. We propose a new fractional approach that allows overcoming the limitations of some previously introduced strategies. In deriving the solution, we use a method based on the eigenfunction of the Weyl fractional derivative. We obtain a solution suitable for computations in a closed form in terms of Mittag–Leffler functions and fractional trigonometric functions. It is a simple extension of the results previously obtained by Laskin et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).

    MATH  Google Scholar 

  2. N. Laskin, “Fractional quantum mechanics and Lévy path integrals,” Phys. Lett. A, 268, 298–305 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Laskin, “Fractional Schrödinger equation,” Phys. Rev. E, 66, 056108 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Wang and M. Xu, “Generalized fractional Schrödinger equation with space–time fractional derivatives,” J. Math. Phys., 48, 043502 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. Dong and M. Xu, “Space–time fractional Schrödinger equation with time-independent potentials,” J. Math. Anal. Appl., 344, 1005–1017 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Jeng, S. L. Y. Xu, E. Hawkins, and J. M. Schwarz, “On the nonlocality of the fractional Schrödinger equation,” J. Math. Phys., 51, 062102 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Y. Luchko, “Fractional Schrödinger equation for a particle moving in a potential well,” J. Math. Phys., 54, 012111 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. S. Bayin, “On the consistency of the solutions of the space fractional Schrödinger equation,” J. Math. Phys., 53, 042105 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. T. Machado, F. Mainardi, and V. Kiryakova, “Fractional calculus: Quo vadimus? (Where are we going?),” Fract. Calc. Appl. Anal., 18, 495–526 (2015).

    MathSciNet  MATH  Google Scholar 

  10. M. Kwásnicki, “Eigenvalues of the fractional Laplace operator in the interval,” J. Funct. Anal., 262, 2379–2402 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Zoia, A. Rosso, and M. Kardar, “Fractional Laplacian in bounded domains,” Phys. Rev. E, 76 (2007).

  12. R. Herrmann, “The fractional Schrödinger equation and the infinite potential well–numerical results using the Riesz derivative,” Gam. Ori. Chron. Phys., 1, 1–12 (2013); arXiv:1210.4410v2 [math-ph] (2012).

    Google Scholar 

  13. S. Bayin, “On the consistency of the solutions of the space fractional Schrödinger equation,” J. Math. Phys., 53, 042105 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. E. Hawkins and J. M. Schwarz, “Comment on ‘On the consistency of solutions of the space fractional Schrödinger equation’,” J. Math. Phys., 54, 014101 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (North-Holland Math. Stud., Vol. 204), Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  16. D. Baleanu, O. G. Mustafa, and D. O’Regan, “A Kamenev-type oscillation result for a linear (1+a)-order fractional differential equation,” Appl. Math. Comput., 259, 374–378 (2015).

    MathSciNet  Google Scholar 

  17. M. Al-Refai and Y. Luchko, “Maximum principle for the multi-term time-fractional diffusion equations with the Riemann–Liouville fractional derivatives,” Appl. Math. Comput., 257, 40–51 (2015).

    MathSciNet  MATH  Google Scholar 

  18. K. Sayevand and K. Pichaghchi, “Successive approximation: A survey on stable manifold of fractional differential systems,” Fract. Calc. Appl. Anal., 18, 621–641 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. X. J. Yang, “Local fractional integral transforms,” Progr. Nonlinear Sci., 4, 1–225 (2011).

    Google Scholar 

  20. X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic, Hong Kong (2011).

    Google Scholar 

  21. S. S. Bayin, Mathematical Methods in Science and Engineering, Wiley, Hoboken, N. J. (2006).

    Book  MATH  Google Scholar 

  22. N. Laskin, “Fractals and quantum mechanics,” Chaos, 10, 780–790 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sayevand.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 192, No. 1, pp. 103–114, July, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayevand, K., Pichaghchi, K. Reanalysis of an open problem associated with the fractional Schrödinger equation. Theor Math Phys 192, 1028–1038 (2017). https://doi.org/10.1134/S0040577917070078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917070078

Keywords

Navigation