Skip to main content
Log in

Rogue waves in baroclinic flows

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate an AB system, which can be used to describe marginally unstable baroclinic wave packets in a geophysical fluid. Using the generalized Darboux transformation, we obtain higher-order rogue wave solutions and analyze rogue wave propagation and interaction. We obtain bright rogue waves with one and two peaks. For the wave packet amplitude and the mean-flow correction resulting from the self-rectification of the nonlinear wave, the positions and values of the wave crests and troughs are expressed in terms of a parameter describing the state of the basic flow, in terms of a parameter responsible for the interaction of the wave packet and the mean flow, and in terms of the group velocity. We show that the interaction of the wave packet and mean flow and also the group velocity affect the propagation and interaction of the amplitude of the wave packet and the self-rectification of the nonlinear wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Moroz and J. Brindley, “Evolution of baroclinic wave packets in a flow with continuous shear and stratification,” Proc. Roy. Soc. London Ser. A, 377, 379–404 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Y. Li and M. Mu, “Baroclinic instability in the generalized Phillips’ model part I: two-layer model,” Adv. Atmos. Sci., 13, 33–42 (1996).

    Article  Google Scholar 

  3. Y. Li, “Baroclinic instability in the generalized Phillips’ model part II: three-layer model,” Adv. Atmos. Sci., 17, 413–432 (2000).

    Article  Google Scholar 

  4. J. Pedlosky, Geophysical Fluid Dynamics, Springer, New York (1987).

    Book  MATH  Google Scholar 

  5. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Acad. Press, London (1982).

    MATH  Google Scholar 

  6. R. Guo, H.-Q. Hao, and L.-L. Zhang, “Dynamic behaviors of the breather solutions for the AB system in fluid mechanics,” Nonlinear Dynam., 74, 701–709 (2013).

    Article  MathSciNet  Google Scholar 

  7. A. M. Kamchatnov and M. V. Pavlov, “Periodic solutions and Whitham equations for the AB system,” J. Phys. A: Math. Gen., 28, 3279–3288 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. D. Gibbon and M. J. McGuinness, “Amplitude equations at the critical points of unstable dispersive physical systems,” Proc. Roy. Soc. London Ser. A, 377, 185–219 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S. Lee and I. M. Held, “Baroclinic wave packets in models and observations,” J. Atmos. Sci., 50, 1413–1428 (1993).

    Article  ADS  Google Scholar 

  10. C. Kharif and E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon,” Eur. J. Mech. B Fluids, 22, 603–634 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Guo, L. Ling, and Q. P. Liu, “High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations,” Stud. Appl. Math., 130, 317–344 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. B. Matveev, “Positons: Slowly decreasing analogues of solitons,” Theor. Math. Phys., 131, 483–497 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ph. Dubard, P. Gaillard, C. Klein, and V. B. Matveev, “On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation,” Eur. Phys. J. Spec. Top., 185, 247–258 (2010).

    Article  Google Scholar 

  14. H.-X. Jia, Y.-J. Liu, and Y.-N. Wang, “Rogue-wave interaction of a nonlinear Schrödinger model for the alpha helical protein,” Z. Naturforsch. A, 71, 27–32 (2016).

    Article  Google Scholar 

  15. H. X. Jia, J. Y. Ma, Y. J. Liu, and X. F. Liu, “Rogue-wave solutions of a higher-order nonlinear Schrödinger equation for inhomogeneous Heisenberg ferromagnetic system,” Indian J. Phys., 89, 281–287 (2015).

    Article  ADS  Google Scholar 

  16. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Exact first-order solutions of the nonlinear Schrödinger equation,” Theor. Math. Phys., 72, 809–818 (1987).

    Article  MATH  Google Scholar 

  17. A. Chabchoub, N. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett., 106, 204502 (2011).

    Article  ADS  Google Scholar 

  18. B. L. Guo, L. M. Ling, and Q. P. Liu, “Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions,” Phys. Rev. E, 85, 026607 (2012).

    Article  ADS  Google Scholar 

  19. D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  20. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation,” Phys. Rev. E, 80, 026601 (2009).

    Article  ADS  MATH  Google Scholar 

  21. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation,” Phys. Rev. E, 81, 046602 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Discrete rogue waves of the Ablowitz–Ladik and Hirota equations,” Phys. Rev. E, 82, 026602 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Ankiewicz, D. J. Kedziora, and N. Akhmdiev, “Rogue wave triplets,” Phys. Lett. A, 375, 2782–2785 (2011).

    Article  ADS  MATH  Google Scholar 

  24. P. Dubard and V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation,” Nat. Hazard. Earth Syst. Sci., 11, 667–672 (2011).

    Article  ADS  Google Scholar 

  25. Y. Ohta and J. Yang, “General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation,” Proc. Roy. Soc. London Ser. A, 468, 1716–1740 (2012).

    Article  ADS  Google Scholar 

  26. B. Tian and Y.-T. Gao, “Spherical Kadomtsev–Petviashviliequation and nebulons for dust ion-acoustic waves with symbolic computation,” Phys. Lett. A, 340, 243–250 (2005).

    Article  ADS  MATH  Google Scholar 

  27. T. Xu, B. Tian, L.-L. Li, X. Lü, and C. Zhang, “Dynamics of Alfvén solitons in inhomogeneous plasmas,” Phys. Plasmas, 15, 102307 (2008).

    Article  ADS  Google Scholar 

  28. Y. Zhang, Y. Song, L. Cheng, J.-Y. Ge, and W.-W. Wei, “Exact solutions and Painlevé analysis of a new (2+1)-dimensional generalized KdV equation,” Nonlinear Dynam., 68, 445–458 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).

    Book  MATH  Google Scholar 

  30. V. B. Matveev, “Darboux transformations, covariance theorems, and integrable systems,” in: L. D. Faddeev’s Seminar on Mathematical Physics (Amer. Math. Soc. Transl. Ser. 2, Vol. 201, M. A. Semenov-Tyan-Shanskij, ed.), Amer. Math. Soc., Providence, R. I. (2000), pp. 179–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wei Zuo.

Additional information

This research was supported by the National Natural Science Foundation of China (Grant No. 11272023), the Open Fund of State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPOC2013B008), and the Foundation of Hebei Education Department of China (Grant No. QN2015051).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 191, No. 2, pp. 291–303, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, DW., Gao, YT., Feng, YJ. et al. Rogue waves in baroclinic flows. Theor Math Phys 191, 725–737 (2017). https://doi.org/10.1134/S0040577917050129

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917050129

Keywords

Navigation