Skip to main content
Log in

Solving evolutionary-type differential equations and physical problems using the operator method

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a general operator method based on the advanced technique of the inverse derivative operator for solving a wide range of problems described by some classes of differential equations. We construct and use inverse differential operators to solve several differential equations. We obtain operator identities involving an inverse derivative operator, integral transformations, and generalized forms of orthogonal polynomials and special functions. We present examples of using the operator method to construct solutions of equations containing linear and quadratic forms of a pair of operators satisfying Heisenberg-type relations and solutions of various modifications of partial differential equations of the Fourier heat conduction type, Fokker–Planck type, Black–Scholes type, etc. We demonstrate using the operator technique to solve several physical problems related to the charge motion in quantum mechanics, heat propagation, and the dynamics of the beams in accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Denisov, B. N. Shvilkin, V. A. Sokolov, and M. I. Vasili’ev, “Pulsar radiation in post-Maxwellian vacuum nonlinear electrodynamics,” Phys. Rev. D, 94, 045021 (2016).

    Article  ADS  Google Scholar 

  2. V. I. Denisov, A. V. Kozar’, and V. F. Sharikhin, “Investigation of the trajectories of a magnetized particle in the equatorial plane of a magnetic dipole,” Moscow Univ. Phys. Bull., 65, 164–169 (2010).

    Article  ADS  MATH  Google Scholar 

  3. V. M. Pastukhov, Y. V. Vladimirova, and V. N. Zadkov, “Photon-number statistics from resonance fluorescence of a two-level atom near a plasmonic nanoparticle,” Phys. Rev. A, 90, 063831 (2014).

    Article  ADS  Google Scholar 

  4. G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, “Undulator radiation in a periodic magnetic field with a constant component,” J. Appl. Phys., 104, 124507 (2008).

    Article  ADS  Google Scholar 

  5. G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, “Influence of a constant magnetic field on the radiation of a planar undulator,” Mosc. Univ. Phys. Bull., 65, 507–512 (2009).

    Article  Google Scholar 

  6. K. V. Zhukovsky, “High harmonic generation in the undulators for free electron lasers,” Opt. Commun., 353, 35–41 (2015).

    Article  ADS  Google Scholar 

  7. K. V. Zhukovsky, “Analytical account for a planar undulator performance in a constant magnetic field,” J. Electromagn. Waves Appl., 28, 1869–1887 (2014).

    Article  Google Scholar 

  8. K. V. Zhukovsky, “Harmonic generation by ultrarelativistic electrons in a planar undulator and the emission-line broadening,” J. Electromagn. Waves Appl., 29, 132–142 (2015).

    Google Scholar 

  9. V. I. Denisov, V. A. Sokolov, and M. I. Vasili’ev, “Nonlinear vacuum electrodynamics birefringence effect in a pulsar’s strong magnetic field,” Phys. Rev. D, 90, 023011 (2014).

    Article  ADS  Google Scholar 

  10. K. V. Zhukovsky, “Emission and tuning of harmonics in a planar two-frequency undulator with account for broadening,” Laser Part. Beams, 34, 447–456 (2016).

    Article  ADS  Google Scholar 

  11. K. V. Zhukovsky, “Violation of the maximum principle and negative solutions with pulse propagation in Guyer–Krumhansl model,” Internat. J. Heat Mass Transfer, 98, 523–529 (2016).

    Article  Google Scholar 

  12. K. V. Zhukovsky, “Exact solution of Guyer–Krumhansl type heat equation by operational method,” Internat. J. Heat Mass Transfer, 96, 132–144 (2016).

    Article  Google Scholar 

  13. Y. Zhang and W. Ye, “Modified ballistic–diffusive equations for transient non-continuum heat conduction,” Internat. J. Heat Mass Transfer, 83, 51–63 (2015).

    Article  Google Scholar 

  14. K. V. Zhukovsky and H. M. Srivastava, “Analytical solutions for heat diffusion beyond Fourier law,” Appl. Math. Comput., 293, 423–437 (2017).

    MathSciNet  Google Scholar 

  15. B. Căruntu and C. Bota, “Analytical approximate solutions for a general class of nonlinear delay differential equations,” Sci. World J., 2014, 631416 (2014).

    Google Scholar 

  16. S. Hesam, A. R. Nazemi, and A. Haghbin, “Analytical solution for the Fokker–Planck equation by differential transform method,” Scientia Iranica, 19, 1140–1145 (2012).

    Article  MATH  Google Scholar 

  17. K. V. Zhukovsky, “Solution of some types of differential equations: Operational calculus and inverse differential operators,” Sci. World J., 2014, 454865 (2014).

    Article  Google Scholar 

  18. K. V. Zhukovsky, “The operational solution of fractional-order differential equations, as well as Black–Scholes and heat-conduction equations,” Moscow Univ. Phys. Bull., 71, 237–244 (2016).

    Article  ADS  Google Scholar 

  19. G. Dattoli, H. M. Srivastava, and K. V. Zhukovsky, “Operational methods and differential equations with applications to initial-value problems,” Appl. Math. Comput., 184, 979–1001 (2007).

    MathSciNet  MATH  Google Scholar 

  20. K. V. Zhukovsky and G. Dattoli, “Evolution of non-spreading Airy wavepackets in time dependent linear potentials,” Appl. Math. Comput., 217, 7966–7974 (2011).

    MathSciNet  MATH  Google Scholar 

  21. K. V. Zhukovsky, “A method of inverse differential operators using ortogonal polynomials and special functions for solving some types of differential equations and physical problems,” Mosc. Univ. Phys. Bull., 70, 93–100 (2015).

    Article  ADS  Google Scholar 

  22. G. Dattoli, H. M. Srivastava, and K. V. Zhukovsky, “A new family of integral transforms and their applications,” Integral Transform. Spec. Funct., 17, 31–37 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite, Gauthier-Villars, Paris (1926).

    MATH  Google Scholar 

  24. D. T. Haimo and C. Markett, “A representation theory for solutions of a higher-order heat equation: I,” J. Math. Anal. Appl., 168, 89–107 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Dattoli, H. M. Srivastava, and K. V. Zhukovsky, “Orthogonality properties of the Hermite and related polynomials,” J. Comput. Appl. Math., 182, 165–172 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  27. P. A. Vshivtseva, V. I. Denisov, and I. P. Denisova, “An integral relation for tensor polynomials,” Theor. Math. Phys., 166, 186–193 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  28. K. B. Wolf, Integral Transforms in Science and Engineering (Math. Concepts Meth. Sci. Engin., Vol. 11), Plenum, New York (1979).

    Book  MATH  Google Scholar 

  29. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Wiley, New York (1984).

    MATH  Google Scholar 

  30. H. W. Gould and A. T. Hopper, “Operational formulas connected with two generalizations of Hermite polynomials,” Duke Math. J., 29, 51–63 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  31. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1944).

    MATH  Google Scholar 

  32. K. V. Zhukovsky, “Operational solution for some types of second order differential equations and for relevant physical problems,” J. Math. Anal. Appl., 446, 628–647 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  33. K. V. Zhukovsky, “Operational method of solution of linear non-integer ordinary and partial differential equations,” Springer Plus, 5, 119 (2016).

    Article  Google Scholar 

  34. A. A. Sokolov, I. M. Ternov, V. Ch. Zhukovsky, and A. V. Borisov, Gauge fields [in Russian], Moscow State University, Moscow (1986).

    Google Scholar 

  35. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys., 32, 1679–1684 (1961).

    Article  ADS  Google Scholar 

  36. R. Kovács and P. Ván, “Generalized heat conduction in heat pulse experiments,” Internat. J. Heat Mass Transfer, 83, 613–620 (2015).

    Article  Google Scholar 

  37. C. Cattaneo, “Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée,” C. R. Acad. Sci. Paris, 247, 431–433 (1958).

    MathSciNet  Google Scholar 

  38. V. Peshkov, “‘Second sound’ in Helium II,” J. Phys., 8, 381 (1944).

    Google Scholar 

  39. C. C. Ackerman and W. C. Overton, “Second sound in solid Helium-3,” Phys. Rev. Lett., 22, 764–766 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 190, No. 1, pp. 58–77, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. Solving evolutionary-type differential equations and physical problems using the operator method. Theor Math Phys 190, 52–68 (2017). https://doi.org/10.1134/S0040577917010044

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917010044

Keywords

Navigation