Skip to main content
Log in

On the Formulaic Solution of a \((n+1)\)th Order Differential Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A systematic method to facilitate the solution of a \((n+1)\)th order differential equation is introduced. This set of ordinary differential equations is unique in the sense that it defines a hierarchy whose solution can be manipulated to solve a partial differential hierarchy, called Burgers’ hierarchy. The latter forms a highly nonlinear evolutionary class of equations. Our approach can be described as in the following two ways. Firstly, we construct the one-parameter Lie group of transformations that leave the ordinary differential equation invariant, and find that they are universally derived from the \((n+1)\) complex roots of a certain polynomial. Secondly, we prove that the exact solution of the hierarchy for all values of n, is given by an integration formula. An important consequence of this study, is the extension of the formulaic method to exactly solve the entire Burgers’ hierarchy. We exemplify the advantageous nature of our results through solving various members of the hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Zhour, Z.: New techniques for solving some matrix and matrix differential equations. Ain Shams Eng. J. 6(1), 347–354 (2015)

    Article  Google Scholar 

  2. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Article  Google Scholar 

  3. Benci, V., Baglini, L.L.: Generalized solutions in PDEs and the Burgers’ equation. J. Differ. Equ. 263, 6916–6952 (2017)

    Article  MathSciNet  Google Scholar 

  4. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  5. Dimakis, N., Giacomini, A., Jamal, S., Leon, G., Paliathanasis, A.: Noether symmetries and stability of ideal gas solutions in Galileon cosmology. Phys. Rev. D 95, 064031 (2017)

    Article  MathSciNet  Google Scholar 

  6. Dimas, S., Tsoubelis, D.: SYM: A New Symmetry-Finding Package for Mathematica. Group Analysis of Differential Equations, pp. 64–70 (2005)

  7. El-Ajou, A., Al-Zhour, Z., Oqielat, M., Momani, S., Hayat, T.: Series solutions of nonlinear conformable fractional KdV–Burgers equation with some applications. Eur. Phys. J. Plus 134, 402 (2019)

    Article  Google Scholar 

  8. El-Rashidy, K.: New traveling wave solutions for the higher Sharma–Tasso–Olver equation by using extension exponential rational function method. Results Phys. 17, 103066 (2020)

    Article  Google Scholar 

  9. Eriqat, T., El-Ajou, A., Oqielat, M., Al-Zhour, Z., Momani, S.: A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos Solitons Fractals 138, 109957 (2020)

    Article  MathSciNet  Google Scholar 

  10. Fan, X., Qu, T., Huang, S., Chen, X., Cao, M., Zhou, Q., Liu, W.: Analytic study on the influences of higher-order effects on optical solitons in fiber laser. Optik 186, 326–331 (2019)

    Article  Google Scholar 

  11. Herron, I., McCalla, C., Mickens, R.: Traveling wave solutions of Burgers’ equation with time delay. Appl. Math. Lett. 107, 106496 (2020)

    Article  MathSciNet  Google Scholar 

  12. Hocquet, A., Nilssen, T., Stannat, W.: Generalized Burgers equation with rough transport noise. Stoch. Process. Their Appl. 130, 2159–2184 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hopf, E.: The partial differential equation \(u_t + u u_x = u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  Google Scholar 

  14. Jamal, S.: A group theoretical application of SO(4,1) in the de Sitter universe. Gen. Relativ. Gravit. 49(88), 1–14 (2017)

    MathSciNet  Google Scholar 

  15. Jamal, S.: Potentials and point symmetries of Klein–Gordon equations in space-time homogenous Gödel-type metrics. Int. J. Geom. Methods Mod. Phys. 14, 1750070 (2017)

    Article  MathSciNet  Google Scholar 

  16. Jamal, S.: Solutions of quasi-geostrophic turbulence in multi-layered configurations. Quaest. Math. 41, 409–421 (2018)

    Article  MathSciNet  Google Scholar 

  17. Jamal, S.: Approximate conservation laws of nonvariational differential equations. Mathematics 7(7), 574 (2019)

    Article  Google Scholar 

  18. Jamal, S.: New multipliers of the barotropic vorticity equations. Anal. Math. Phys. 10(21), 1–13 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Jamal, S., Johnpillai, A.G.: Fourth-order pattern forming PDEs: partial and approximate symmetries. Math. Model. Anal. 25(2), 198–207 (2020)

    Article  MathSciNet  Google Scholar 

  20. Kudryashov, N.A., Sinelshchikov, D.I.: Exact solutions of equations for the Burgers hierarchy. Appl. Math. Comput. 215(3), 1293–1300 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Obaidullah, U., Jamal, S.: A computational procedure for exact solutions of Burgers’ hierarchy of nonlinear partial differential equations. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s12190-020-01403-x

    Article  Google Scholar 

  22. Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18, 1212–1215 (1977)

    Article  MathSciNet  Google Scholar 

  23. Oqielat, M., El-Ajou, A., Al-Zhour, Z., Alkhasawneh, R., Alrabaiah, H.: Series solutions for nonlinear time-fractional Schrödinger equations: Comparisons between conformable and Caputo derivatives. Alex. Eng. J. 59(4), 2101–2114 (2020)

    Article  Google Scholar 

  24. Rocha Filio, T.M., Figueiredo, A.: [SADE] A Maple package for the symmetry analysis of differential equations. Comput. Phys. Commun. 182, 467–476 (2011)

    Article  Google Scholar 

  25. Shang, Y., Huang, Y., Yuan, W.: Bäcklund transformations and abundant exact explicit solutions of the Sharma–Tasso–Olver equation. Appl. Math. Comput. 217(17), 7172–7183 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Shang, Y., Qin, J., Huang, Y., Yuan, W.: Abundant exact and explicit solitary wave and periodic wave solutions to the Sharma–Tasso–Olver equation. Appl. Math. Comput. 202(2), 532–538 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Wang, M., Zhang, J., Li, E., Xin, X.: The generalized Cole–Hopf transformation to a general variable coefficient Burgers equation with linear damping term. Appl. Math. Lett. 105, 106299 (2020). (PDEs, Proceedings of ERCIM (1992), Bonn)

    Article  MathSciNet  Google Scholar 

  28. Zhou, Y., Yang, F., Liu, Q.: Reduction of the Sharma–Tasso–Olver equation and series solutions. Commun. Nonlinear Sci. Numer. Simul. 16(2), 641–646 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameerah Jamal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

SJ acknowledges the financial support of the National Research Foundation of South Africa (118047).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaidullah, U., Jamal, S. On the Formulaic Solution of a \((n+1)\)th Order Differential Equation. Int. J. Appl. Comput. Math 7, 58 (2021). https://doi.org/10.1007/s40819-021-01010-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01010-9

Keywords

Mathematics Subject Classification

Navigation