Skip to main content
Log in

Higher-order analogues of the unitarity condition for quantum R-matrices

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a family of nth-order identities for quantum R-matrices of the Baxter–Belavin type in the fundamental representation. The set of identities includes the unitarity condition as the simplest case (n = 2). Our study is inspired by the fact that the third-order identity provides commutativity of the Knizhnik–Zamolodchikov–Bernard connections. On the other hand, the same identity yields the R-matrix-valued Lax pairs for classical integrable systems of Calogero type, whose construction uses the interpretation of the quantum R-matrix as a matrix generalization of the Kronecker function. We present a proof of the higher-order scalar identities for the Kronecker functions, which is then naturally generalized to R-matrix identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Yang, Phys. Rev. Lett., 19, 1312–1315 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  2. I. V. Cherednik, Theor. Math. Phys., 43, 356–358 (1980).

    Article  MathSciNet  Google Scholar 

  3. A. Smirnov, Central Eur. J. Phys., 8, 542–554 (2010); arXiv:0903.1466v1 [math-ph] (2009).

    ADS  Google Scholar 

  4. A. Levin, M. Olshanetsky, and A. Zotov, JHEP, 1707, 012 (2014); arXiv:1405.7523v3 [hep-th] (2014); G. Aminov, S. Arthamonov, A. Smirnov, and A. Zotov, J. Phys. A: Math. Theor., 47, 305207 (2014); arXiv: 1402.3189v3 [hep-th] (2014).

    Article  ADS  Google Scholar 

  5. A. Antonov, K. Hasegawa, and A. Zabrodin, Nucl. Phys. B, 503, 747–770 (1997); arXiv:hep-th/9704074v2 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  6. R. J. Baxter, Ann. Phys., 70, 193–228 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. A. Belavin, Nucl. Phys. B, 180, 189–200 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Weil, Elliptic Functions According to Eisenstein and Kronecker (Ergeb. Math. Grenzgeb., Vol. 88), Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  9. A. M. Levin, M. A. Olshanetsky, and A. V. Zotov, Theor. Math. Phys., 184, 924–939 (2015); arXiv:1501.07351v3 [math-ph] (2015).

    Article  Google Scholar 

  10. A. Levin, M. Olshanetsky, and A. Zotov, J. Phys. A: Math. Theor., 49, 014003 (2016); arXiv:1507.02617v2 [math-ph] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Polishchuk, Adv. Math., 168, 56–95 (2002).

    Article  MathSciNet  Google Scholar 

  12. A. Levin, M. Olshanetsky, and A. Zotov, JHEP, 1410, 109 (2014); arXiv:1408.6246v3 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. V. Bazhanov and Yu. G. Stroganov, “On connection between the solutions of the quantum and classical triangle equations,” in: Proc. Intl. Seminar on High Energy Physics and Quantum Field Theory (Protvino, July 1983), Inst. High Energy Physics, Protvino, pp. 51–53; L. A. Takhtadzhyan, Zap. Nauchn. Sem. LOMI, 133, 258–276 (1984).

    Google Scholar 

  14. J. D. Fay, Theta Functions on Riemann Surfaces (Lect. Notes Math., Vol. 352), Springer, Berlin (1973); D. Mumford, Tata Lectures on Theta (Progr. Math., Vol. 28), Vol. 1, Introduction and Motivation: Theta Functions in One Variable. Basic Results on Theta Functions in Several Variables, Birkhäuser, Boston, Mass. (1983); Vol. 2, Jaconian Theta Functions and Differential Equations (Progr. Math., Vol. 43), Birkhäuser, Boston, Mass. (1984).

    MATH  Google Scholar 

  15. S. Fomin and A. N. Kirillov, Discrete Math., 153, 123–143 (1996).

    Article  MathSciNet  Google Scholar 

  16. S. N. M. Ruijsenaars, Commun. Math. Phys., 110, 191–213 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. A. Belavin and V. G. Drinfeld, Funct. Anal. Appl., 16, 159–180 (1982).

    Article  MathSciNet  Google Scholar 

  18. I. M. Krichever, Funct. Anal. Appl., 14, 282–290 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zotov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 189, No. 2, pp. 176–185, November, 2016.

This research was performed at the Steklov Mathematical Institute of Russian Academy of Sciences and was supported by a grant from the Russian Science Foundation (Project No. 14-50-00005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotov, A.V. Higher-order analogues of the unitarity condition for quantum R-matrices. Theor Math Phys 189, 1554–1562 (2016). https://doi.org/10.1134/S0040577916110027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916110027

Keywords

Navigation