Skip to main content
Log in

Combinatorial Yang–Baxter maps arising from the tetrahedron equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We survey the matrix product solutions of the Yang–Baxter equation recently obtained from the tetrahedron equation. They form a family of quantum R-matrices of generalized quantum groups interpolating the symmetric tensor representations of U q (A n−1 (1)) and the antisymmetric tensor representations of \({U_{ - {q^{ - 1}}}}\left( {A_{n - 1}^{\left( 1 \right)}} \right)\) . We show that at q = 0, they all reduce to the Yang–Baxter maps called combinatorial R-matrices and describe the latter by an explicit algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Zamolodchikov, Soviet Phys. JETP, 52, 325–335.

  2. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Dover, Mineola, N. Y. (2007).

    MATH  Google Scholar 

  3. V. V. Bazhanov and S. M. Sergeev, J. Phys. A: Math. Theor., 39, 3295–3310 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Kuniba and S. Sergeev, Commun. Math. Phys., 324, 695–713 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Kuniba and M. Okado, Commun. Math. Phys., 334, 1219–1244 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Kuniba, M. Okado, and S. Sergeev, J. Phys. A: Math. Theor., 48, 304001 (2013).

    Article  MathSciNet  Google Scholar 

  7. M. M. Kapranov and V. A. Voevodsky, “2-categories and Zamolodchikov tetrahedron equations,” in: Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods (Proc. Symp. Pure Math., Vol. 56, W. J. Haboush and B. J. Parshall, eds.), Amer. Math. Soc., Providence, R. I. (1994), pp. 177–259.

    Chapter  Google Scholar 

  8. I. Heckenberger, J. Algebra, 323, 2130–2182 (2010).

    Article  MathSciNet  Google Scholar 

  9. I. Heckenberger and H. Yamane, Rev. Unión Mat. Argentina, 51, 107–146 (2010).

    MathSciNet  Google Scholar 

  10. V. G. Drinfel’d, “Quantum groups,” in: Proc. International Congress of Mathematicians (ICM) (Berkeley, California, 3–11 August 1986, A. M. Gleason, ed.), Amer. Math. Soc., Providence, R. I. (1987), pp. 798–820.

    Google Scholar 

  11. M. Jimbo, Lett. Math. Phys., 10, 63–69 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Nakayashiki and Y. Yamada, Selecta Math., n.s., 3, 547–599 (1997).

    Article  MathSciNet  Google Scholar 

  13. K. Hikami and R. Inoue, J. Phys. A: Math. Gen., 33, 4081–4094 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Kashiwara, Duke Math. J., 63, 465–516 (1991).

    Article  MathSciNet  Google Scholar 

  15. E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, Lett. Math. Phys., 17, 69–77 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  16. S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki, Internat. J. Mod. Phys. A, 7 (Suppl. 1A), 449–484 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada, “Remarks on fermionic formula,” in: Recent Developments in Quantum Affine Algebras and Related Topics (Contemp. Math., Vol. 248, N. Jing and K. C. Misra, eds.), Amer. Math. Soc., Providence, R. I. (1999), pp. 243–291.

    Chapter  Google Scholar 

  18. M. Okado, “X = M conjecture,” in: Combinatorical Aspect of Integrable Systems (Math. Soc. Japan Memoirs, Vol. 17, A. Kuniba and M. Okado, eds.), Math. Soc. Japan, Tokyo (2007), pp. 43–73.

    Google Scholar 

  19. R. Inoue, A. Kuniba, and T. Takagi, J. Phys. A: Math. Theor., 45, 073001 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Kuniba, Bethe Ansatz and Combinatorics [in Japanese], Asakura, Tokyo (2011).

    Google Scholar 

  21. V. G. Drinfeld, “On some unsolved problems in quantum group theory,” in: Quantum Groups (Lect. Notes Math., Vol. 1510, P. P. Kulish, ed.), Springer, Berlin (1992), pp. 1–8.

    Chapter  Google Scholar 

  22. A. Veselov, “Yang–Baxter maps: Dynamical point of view,” in: Combinatorical Aspect of Integrable Systems (Math. Soc. Japan Memoirs, Vol. 17, A. Kuniba and M. Okado, eds.), Math. Soc. Japan, Tokyo (2007), pp. 145–167.

    Google Scholar 

  23. A. Kuniba and M. Okado, J. Phys. A: Math. Theor., 45, 465206 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Kuniba and S. Maruyama, J. Phys. A: Math. Theor., 48, 135204 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. M. Sergeev, J. Phys. A: Math. Theor., 42, 295206 (2009).

    Article  Google Scholar 

  26. G. Benkart, S.-J. Kang, and M. Kashiwara, J. Amer. Math. Soc., 13, 295–331 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kuniba.

Additional information

This research is supported by Grants-in-Aid for Scientific Research No. 15K13429.

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 189, No. 1, pp. 84–100, October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuniba, A. Combinatorial Yang–Baxter maps arising from the tetrahedron equation. Theor Math Phys 189, 1472–1485 (2016). https://doi.org/10.1134/S004057791610007X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791610007X

Keywords

Navigation